2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc

上传人(卖家):小豆芽 文档编号:1078326 上传时间:2021-02-07 格式:DOC 页数:9 大小:363.50KB
下载 相关 举报
2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc_第1页
第1页 / 共9页
2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc_第2页
第2页 / 共9页
2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc_第3页
第3页 / 共9页
2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc_第4页
第4页 / 共9页
2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、离散型随机变量及其分布列离散型随机变量及其分布列 考试要求 1.理解取有限个值的离散型随机变量及其分布列的概念, 了解分 布列对于刻画随机现象的重要性. 2.理解超几何分布及其导出过程,并能进行简单的应用 1随机变量的有关概念 (1)随机变量:随着试验结果变化而变化的变量,常用字母 X,Y,表 示 (2)离散型随机变量:所有取值可以一一列出的随机变量 2离散型随机变量分布列的概念及性质 (1)概念:若离散型随机变量 X 可能取的不同值为 x1,x2,xi,xn,X 取每一个值 xi(i1,2,n)的概率 P(Xxi)pi,以表格的形式表示如下: X x1 x2 xi xn P p1 p2 pi

2、 pn 此表称为离散型随机变量 X 的概率分布列,简称为 X 的分布列有时也用等 式 P(Xxi)pi,i1,2,n 表示 X 的分布列 (2)分布列的性质 pi0,i1,2,3,n; n i1pi1. 3常见离散型随机变量的分布列 (1) 两 点 分 布 : 若 随 机 变 量X服 从 两 点 分 布 , 则 其 分 布 列 为 ,其中 pP(X1)称为成功概率 (2)超几何分布:在含有 M 件次品的 N 件产品中,任取 n 件,其中恰有 X 件次 品, 则 P(Xk)C k MCn k NM CnN , k0,1,2, , m, 其中 mminM, n, 且 nN, MN, n,M,NN*

3、,称随机变量 X 服从超几何分布 X 0 1 m P C0MCn 0 NM CnN C1MCn 1 NM CnN Cm MCn m NM CnN 常用结论 1随机变量的线性关系 若 X 是随机变量,YaXb,a,b 是常数,则 Y 也是随机变量 2分布列性质的两个作用 (1)利用分布列中各事件概率之和为 1 可求参数的值(2)随机变量 所取的值 分别对应的事件是两两互斥的,利用这一点可以求相关事件的概率 一、易错易误辨析(正确的打“”,错误的打“”) (1)离散型随机变量的分布列中,各个概率之和可以小于 1. ( ) (2)离散型随机变量的各个可能值表示的事件是彼此互斥的 ( ) (3)如果随

4、机变量 X 的分布列由下表给出,则它服从两点分布 ( ) X 2 5 P 0.3 0.7 (4)从 4 名男演员和 3 名女演员中选出 4 人,其中女演员的人数 X 服从超几何 分布 ( ) 答案 (1) (2) (3) (4) 二、教材习题衍生 1设随机变量 X 的分布列如下: X 1 2 3 4 5 P 1 12 1 6 1 3 1 6 p 则 p 为( ) A1 6 B 1 3 C 1 4 D 1 12 C 由分布列的性质知, 1 12 1 6 1 3 1 6p1,p1 3 4 1 4. 2从 4 名男生和 2 名女生中任选 3 人参加演讲比赛,设随机变量 表示所选 3 人中女生的人数,

5、则 P(1)等于( ) A1 5 B 2 5 C 3 5 D 4 5 D P(1)1P(2)1C 1 4C22 C36 4 5. 3有一批产品共 12 件,其中次品 3 件,每次从中任取一件,在取到合格品 之前取出的次品数 X 的所有可能取值是 0,1,2,3 因为次品共有 3 件,所以在取到合格品之前取出的次品数 X 的可能 取值为 0,1,2,3. 4从装有 3 个红球,2 个白球的袋中随机取出 2 个球,设其中有 X 个红球, 则随机变量 X 的分布列为 X 0 1 2 P 0.1 0.6 0.3 因为 X 的所有可能取值为 0,1,2,P(X0)C 2 2 C25 0.1,P(X1)C

6、 1 3 C12 C25 0.6,P(X2)C 2 3 C250.3,所以 X 的分布列为 X 0 1 2 P 0.1 0.6 0.3 考点一 离散型随机变量的分布列的性质 分布列性质的两个作用 (1)利用分布列中各事件概率之和为 1 可求参数的值及检查分布列的正确性 (2)随机变量 X 所取的值分别对应的事件是两两互斥的,利用这一点可以求随 机变量在某个范围内的概率 1随机变量 X 的分布列如下: X 1 0 1 P a b c 其中 a,b,c 成等差数列,则 P(|X|1) ,公差 d 的取值范围 是 2 3 1 3, 1 3 因为 a,b,c 成等差数列,所以 2bac.又 abc1,

7、所 以 b1 3, 所以 P(|X|1)ac 2 3.又 a 1 3d, c 1 3d, 根据分布列的性质, 得 0 1 3 d2 3,0 1 3d 2 3,所以 1 3d 1 3. 2 设随机变量 X 的分布列为 P Xk 5 ak(k1,2,3,4,5) 则: (1)a ; (2)P X3 5 ; (3)P 1 10X 7 10 . (1) 1 15 (2) 4 5 (3) 2 5 (1)由分布列的性质,得 P X1 5 P X2 5 P X3 5 P X4 5 P(X1)a2a3a4a5a1, 所以 a 1 15. (2)P X3 5 P X3 5 P X4 5 P(X1)3 1 154

8、 1 155 1 15 4 5. (3)P 1 10X 7 10 P X1 5 P X2 5 P X3 5 1 15 2 15 3 15 6 15 2 5. 3设离散型随机变量 X 的分布列为 X 0 1 2 3 4 P 0.2 0.1 0.1 0.3 m (1)求随机变量 Y2X1 的分布列; (2)求随机变量 |X1|的分布列; (3)求随机变量 X2的分布列 解 (1)由分布列的性质知, 020.10.10.3m1,得 m0.3. 首先列表为: X 0 1 2 3 4 2X1 1 3 5 7 9 从而 Y2X1 的分布列为 Y 1 3 5 7 9 P 0.2 0.1 0.1 0.3 0.

9、3 (2)列表为 X 0 1 2 3 4 |X1| 1 0 1 2 3 P(0)P(X1)0.1, P(1)P(X0)P(X2)0.20.10.3, P(2)P(X3)0.3, P(3)P(X4)0.3. 故 |X1|的分布列为 0 1 2 3 P 0.1 0.3 0.3 0.3 (3)首先列表为 X 0 1 2 3 4 X2 0 1 4 9 16 从而 X2的分布列为 0 1 4 9 16 P 0.2 0.1 0.1 0.3 0.3 点评:由于分布列中每个概率值均为非负数,故在利用概率和为 1 求参数值 时,务必要检验 考点二 求离散型随机变量的分布列 离散型随机变量分布列的求解步骤 典例

10、1 某商场销售某种品牌的空调器,每周周初购进一定数量的空调器, 商场每销售一台空调器可获利 500 元若供大于求,则每台多余的空调器需交保 管费 100 元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润 200 元 (1)若该商场某周初购进 20 台空调器,求当周的利润(单位:元)关于当周需求 量 n(单位:台,nN)的函数解析式 f (n); (2)该商场记录了去年夏天(共 10 周)的空调器周需求量 n(单位:台,nN), 整理得下表 周需求量 n 18 19 20 21 22 频数 1 2 3 3 1 以记录的每周需求量的频率作为每周需求量的概率,若商场某周初购进 20 台

11、 空调器,X 表示当周的利润(单位:元),求 X 的分布列 解 (1)当 n20 且 nN 时,f (n)50020200(n20)200n6 000, 当 n19 且 nN 时,f (n)500n100(20n)600n2 000, 所以 f (n) 200n6 000n20, 600n2 000n19 (nN) (2)由(1)得 f (18)8 800,f (19)9 400,f (20)10 000,f (21)10 200,f (22) 10 400, 所以当周的利润 X 的所有可能取值分别为 8 800,9 400,10 000,10 200,10 400, 易知 P(X8 800)

12、0.1,P(X9 400)0.2,P(X10 000)0.3,P(X10 200) 0.3,P(X10 400)0.1. 所以 X 的分布列为 X 8 800 9 400 10 000 10 200 10 400 P 0.1 0.2 0.3 0.3 0.1 点评:求离散型随机变量分布列的关键是求随机变量所取值对应的概率,在 求解时要注意应用计数原理、古典概型等知识 跟进训练 已知 2 件次品和 3 件正品混放在一起,现需要通过检测将其区分,每次随机 检测一件产品,检测后不放回,直到检测出 2 件次品或检测出 3 件正品时检测结 束 (1)求第一次检测出的是次品且第二次检测出的是正品的概率; (

13、2)已知每检测一件产品需要费用 100 元,设 X 表示直到检测出 2 件次品或者 检测出 3 件正品时所需要的检测费用(单位:元),求 X 的分布列 解 (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件 A, P(A)A 1 2A13 A25 3 10. (2)X 的可能取值为 200,300,400. P(X200)A 2 2 A25 1 10, P(X300)A 3 3C12C13A22 A35 3 10, P(X400)1P(X200)P(X300) 1 1 10 3 10 6 10 3 5. 故 X 的分布列为 X 200 300 400 P 1 10 3 10 3 5

14、考点三 超几何分布 超几何分布的实际应用问题,主要是指与两类不同元素的抽取 问题的概率计算和离散型随机变量的分布列、 期望及方差的求解等有关的问题 解 题的关键如下: 定型:根据已知建立相应的概率模型,并确定离散型随机变量服从的分布 的类型,特别要区分超几何分布与二项分布 定参:确定超几何分布中的三个参数 N,M,n.即确定试验中包含的元素的 个数、特殊元素的个数及要抽取的元素个数 列表:根据离散型随机变量的取值及其对应的概率列出分布列 求值:根据离散型随机变量的期望和方差公式,代入相应数值求值 典例 2(2020 西安模拟)现要调查某县城居民对某项政策的知晓率,专家在进 行评估时,从该县城的

15、 10 个乡镇中随机抽取居民进行调查,知晓率为 90%及以上 记为合格,否则记为不合格已知该县城的 10 个乡镇中,有 7 个乡镇的居民的知 晓率可达 90%,其余的均在 90%以下 (1)现从这 10 个乡镇中随机抽取 3 个进行调查, 求抽到的乡镇中恰有 2 个乡镇 不合格的概率; (2)若记从该县城随机抽取的 3 个乡镇中不合格的乡镇的个数为 , 求 的分布 列和数学期望 解 (1)从这 10 个乡镇中随机抽取 3 个进行调查,基本事件总数为 C 3 10 120(个) 抽到的乡镇中恰有 2 个乡镇不合格的基本事件数为 C 2 3C 1 721(个) 那么从 这 10 个乡镇中随机抽取

16、3 个进行调查,抽到的乡镇中恰有 2 个乡镇不合格的概率 P 21 120 7 40. (2)由题可知, 的可能取值为 0,1,2,3, 则 P(0) C37 C310 35 120 7 24,P(1) C13C27 C310 63 120 21 40,P(2) C23C17 C310 21 120 7 40,P(3) C33 C310 1 120. 所以 的分布列为 0 1 2 3 P 7 24 21 40 7 40 1 120 E()0 7 241 21 402 7 403 1 120 9 10. 点评:超几何分布描述的是不放回抽样问题,其实质是古典概型,主要用于 抽检产品、摸不同类别的小

17、球等概率模型 跟进训练 端午节吃粽子是我国的传统习俗 设一盘中装有 10 个粽子, 其中豆沙粽 2 个, 肉粽 3 个,白粽 5 个,这三种粽子的外观完全相同从中任意选取 3 个 (1)求三种粽子各取到 1 个的概率; (2)设 X 表示取到的豆沙粽个数,求 X 的分布列; (3)设 Y 表示取到粽子的种类,求 Y 的分布列 解 (1)令 A 表示事件“三种粽子各取到 1 个”,则 P(A)C 1 2C13C15 C310 1 4. (2)X 的所有可能值为 0,1,2,且 P(X0) C38 C310 7 15,P(X1) C12C28 C310 7 15, P(X2)C 2 2C18 C310 1 15. 综上知,X 的分布列为 X 1 2 3 P 7 15 7 15 1 15 (3)由题意知 Y 的所有可能值为 1,2,3,且 P(Y1)C 3 3C35 C310 110 120 11 120, P(Y3)C 1 2C13C15 C310 30 120 1 4, P(Y2)1P(X1)P(X3)1 11 120 30 120 79 120. 综上可知,Y 的分布列为 Y 1 2 3 P 11 120 79 120 1 4

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(2022届高考(统考版)数学理科一轮复习教学案:第10章 第5节 离散型随机变量及其分布列 (含解析).doc)为本站会员(小豆芽)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|