1、1 七年级七年级数学数学下册知识点及公式下册知识点及公式汇总汇总 第五章第五章 相交线与平行线相交线与平行线 一、知识框架一、知识框架 二、知识概念二、知识概念 1.邻补角: 两条直线相交所构成的四个角中, 有公共顶点且有一条公共边的两个角是邻补角。 2.对顶角: 一个角的两边分别是另一个叫的两边的反向延长线, 像这样的两个角互为对顶角。 3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。 4.平行线:在同一平面内,永不相交的两条直线叫做平行线。 5.同位角、内错角、同旁内角: 同位角:1 与5、2 与像这样具有相同位置关系的一对角叫做同位角。 内错角:与6、与像这样的一
2、对角叫做内错角。 同旁内角:与5、与像这样的一对角叫做同旁内角。 6.命题:判断一件事情的语句叫命题。 7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换, 简称平移。 8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的 两个点叫做对应点。 9.对顶角的性质:对顶角相等。 10垂线的性质: 性质 1:过一点有且只有一条直线与已知直线垂直。 2 性质 2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线
3、也互相平行。 12.平行线的性质: 性质 1:两直线平行,同位角相等。 性质 2:两直线平行,内错角相等。 性质 3:两直线平行,同旁内角互补。 13.平行线的判定: 判定 1:同位角相等,两直线平行。 判定 2:内错角相等,两直线平行。 判定 3:同旁内角互补,两直线平行。 第六章第六章 平面直角坐标系平面直角坐标系 一知识框架一知识框架 二知识概念二知识概念 1.有序数对:有顺序的两个数 a 与 b 组成的数对叫做有序数对,记做(a,b) 2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。 3.横轴、纵轴、原点:水平的数轴称为 x 轴或横轴;竖直的数轴称为 y
4、 轴或纵轴;两坐标轴 的交点为平面直角坐标系的原点。 4.坐标:对于平面内任一点 P,过 P 分别向 x 轴,y 轴作垂线,垂足分别在 x 轴,y 轴上,对 应的数 a,b 分别叫点 P 的横坐标和纵坐标。 5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二 象限、第三象限、第四象限。 注意:坐标轴上的点不在任何一个象限内。 第七章第七章 三角形三角形 一一知识概念知识概念 1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。 3.高:从三角形的一个顶点向它的对边所在直线
5、作垂线,顶点和垂足间的线段叫做三角形的 高。 4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。 5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的 线段叫做三角形的角平分线。 6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。 3 6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。 7.多边形的内角:多边形相邻两边组成的角叫做它的内角。 8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。 9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。 10.正多
6、边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。 11.平面镶嵌: 用一些不重叠摆放的多边形把平面的一部分完全覆盖, 叫做用多边形覆盖平面。 12.公式与性质 三角形的内角和:三角形的内角和为 180; 三角形外角的性质: 性质 1:三角形的一个外角等于和它不相邻的两个内角的和。 性质 2:三角形的一个外角大于任何一个和它不相邻的内角。 多边形内角和公式:n 边形的内角和等于(n-2)180 多边形的外角和:多边形的内角和为 360。 多边形对角线的条数:从 n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分成 (n-2) 二二知识框架知识框架 第八章第八章 二元一次方
7、程组二元一次方程组 一一、知识概念、知识概念 1.二元一次方程:含有两个未知数,并且未知数的指数都是 1,像这样的方程叫做二元一次。 方程,一般形式是 ax+by=c(a0,b0)。 2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。 3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方 程组的解。 4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组 的解。 5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。 6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现
8、4 消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。 7.加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加 或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。 二二知识结构图知识结构图 第九第九章章 不等式与不等式组不等式与不等式组 一知识框架一知识框架 二、知识概念二、知识概念 1.用符号“”“”“ ”“”“”表示大小关系的式子叫做不等式。 2.不等式的解:使不等式成立的未知数的值,叫做不等式的解。 3.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。 4.一元一次不等式:不等式的左、右两边都是整式,只
9、有一个未知数,并且未知数的最高次 数是 1,像这样的不等式,叫做一元一次不等式。 5.一元一次不等式组:一。般地,关于同一未知数的几个一元一次不等式合在一起,就组成 了一个一元一次不等式组 5 7.不等式的性质: 不等式的基本性质 1:不等式的两边都加上(或减去)同一个数(或式子) ,不等号的方向不 变。 不等式的基本性质 2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。 不等式的基本性质 3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。 第十章第十章 数据的收集、整理与描述数据的收集、整理与描述 一知识框架一知识框架 1.全面调查:考察全体对象的调查方式叫做全面调查。 2.抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查。 3.总体:要考察的全体对象称为总体。 4.个体:组成总体的每一个考察对象称为个体。 5.样本:被抽取的所有个体组成一个样本。 6.样本容量:样本中个体的数目称为样本容量。 7.频数:一般地,我们称落在不同小组中的数据个数为该组的频数。 8.频率:频数与数据总数的比为频率。 9.组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组 数,每一组两个端点的差叫做组距。