(新人教版高中数学公开课精品教案)分层抽样 教学设计(宁夏银川).docx

上传人(卖家):四川天地人教育 文档编号:1652747 上传时间:2021-08-13 格式:DOCX 页数:10 大小:42.49KB
下载 相关 举报
(新人教版高中数学公开课精品教案)分层抽样 教学设计(宁夏银川).docx_第1页
第1页 / 共10页
(新人教版高中数学公开课精品教案)分层抽样 教学设计(宁夏银川).docx_第2页
第2页 / 共10页
(新人教版高中数学公开课精品教案)分层抽样 教学设计(宁夏银川).docx_第3页
第3页 / 共10页
亲,该文档总共10页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、新人教版高中数学优质公开课精品教案及点评资料 分层抽样教学设计 授课教师:宁夏银川市第二中学周 XX 教材:教材:人教版普通高中课程标准实验教科书数学(A 版) 必修 3 课题:课题:2.1.3 分层抽样(第一课时) 课时:课时:1 课时 一.教学内容分析 分层抽样是高中教材人教 A 版必修三第二章第三节的内容, 是统计这一章中继简单随机抽样、系统抽样之后. 这里所说的统 计是一门研究如何有效地收集、整理、分析数据,并对所考虑的问题做出 推断或预测,从而为采取决策提供依据和建议的科学.因此,统计的首要问 题是如何收集数据.高中阶段我们学习收集数据的主要方法是随机抽样,而 分层抽样就是随机抽样中

2、非常重要的一种. 本章所学统计内容是初中所学 统计知识的延续和深化.同时也是为下一节“用样本估计总体”的学习打下 基础,因此本节的内容起着承前启后的作用. 教材从“了解某地区中小学生的近视情况及其形成原因”的探究 中引入的念在探究过程中,应该引导学生体会:调查者是利用事先掌握 的各种信息对总体进行分层,这可以保证每一层一定有个体被抽到,从而 使得样本具有更好的代表性为了达到此目的,教材利用右栏问题“你认 为哪些因素可能影响到学生的视力?设计抽样方法时,需要考虑这些因素 吗? ”来引导学生思考,分层抽样的想法并不复杂,关键是通过实例,在与 简单随机抽样的比较中,让学生思考讨论它的特点,并根据实际

3、问题的需要 设计恰当的抽样方法.提升数据分析素养.因此,我认为本节课的教学重点教学重点 为:分层抽样的概念及其步骤为:分层抽样的概念及其步骤 二教学目标设置 新人教版高中数学优质公开课精品教案及点评资料 课程标准对本节课的要求和本节教学内容,并考虑学生的接受能 力,我将本节课的教学目标确定为: 1通过实例,了解分层抽样的特点和适用范围及分层抽样的必要性; 2结合实例体会分层抽样与简单随机抽样和系统抽样的区别与联系, 提高学生的总结和归纳能力; 3.在简单的实际情景中,能根据实际问题的特点,设计恰当的抽样方法 解决问题. 三学生学情分析 在初中已经初步接触了总体、个体、样本等概念,虽然学生已经了

4、 解了简单随机抽样和系统抽样的特点和适用范围,以及在随机抽样中必 须保证样本的代表性, 这些为本节课的学习提供了帮助.但学生面对较为 复杂的总体时, 对保证样本的代表性有疑虑.分层抽样的概念对于他们来 说还是比较抽象的.而要透彻理解分层抽样的方法并能够解决实际问题 更是有一定的困难. 本课学生在已有的抽样知识的基础上进一步学习抽 样方法,并对其全过程有一个系统的感知和理解,为后面学习数据的分 析和概率奠定基础. 教学难点:分层抽样方法的必要性,以及根据实际情况选择正确的抽教学难点:分层抽样方法的必要性,以及根据实际情况选择正确的抽 样方法样方法 课时安排课时安排 1 课时 【教学过程】【教学过

5、程】 一、一、 创设情境,温故求新创设情境,温故求新 1 1、复习提问、复习提问 (1)(1)思考:思考:简单随机抽样、系统抽样的共同点、特征以.及适用范围 新人教版高中数学优质公开课精品教案及点评资料 21 世纪教育网 类类 别别共同点共同点特征特征联联系系 适用适用 范围范围 简单随机简单随机 抽样抽样 (1)抽样 过程中每个个 体被抽到的可 能性相等 从总体中逐个抽取 总体 个数较少 系统抽样系统抽样 将总体均分成几部 分,按预先制定的规则在 各部分抽取 在起始部分样 时采用简随机抽样 总体 个数较多 (2)(2)想一想想一想: :你认为设计抽样方法时,最核心的问题是什么? 最核心的问题

6、是要考虑如何使抽取的样本具有很好的代表性. 2 2、探究新知、探究新知 问题情境问题情境 :银川二中教育集团有 500 名职工,为了了解该单位职工身 体状况的有关指标,打算从中抽取 100 名职工作为样本,应该怎样抽取? 预设(预设(1 1)学生可能会用简单随机抽样,系统抽样的方法设计抽样;)学生可能会用简单随机抽样,系统抽样的方法设计抽样; 预设(预设(2 2)学生会考虑到抽样过程中遇到的问题和困惑)学生会考虑到抽样过程中遇到的问题和困惑. . 在解决过程中教师提出以下问题: 11 你怎么安排抽样你怎么安排抽样, ,以保证样本的代表性以保证样本的代表性? ? 22 在抽样中你可能遇到哪些问题

7、在抽样中你可能遇到哪些问题? ? 33 这些问题可能会影响什么这些问题可能会影响什么? ? 44 你打算怎样解决这些问题你打算怎样解决这些问题? ? 师生分析完抽样方法后补充条件: 增加条件增加条件: : 问题情境:问题情境:银川二中教育集团有 500 名职工,其中不到 35 岁的有 125 人,3549 岁的有 280 人,50 岁以上的有 95 人.为了了解该单位职工年龄 与身体状况的有关指标,从中抽取 100 名职工作为样本,应该怎样抽取? 新人教版高中数学优质公开课精品教案及点评资料 解: (1)分三层:不到 35 岁的职工,3549 岁的职工,50 岁以上的 职工; (2)确定样本容

8、量与总体的个体数之比 100:500=1:5; (3)利用抽样比确定各年龄段应抽取的个体数: 不到 35 岁的职工:125 5 1 =25(人) 3549 岁的职工:280 5 1 =56(人) 50 岁以上的职工:95 5 1 =19(人) (4)利用简单随机抽样或系统抽样的方法,从各年龄段分别抽取 25,56,19 人; (5)然后将抽取的 25,56,19 人合在一起,就是所抽取的样本. 【总结【总结】利用简单随机抽样和系统抽样得到的样本代表性差.样本中应 该是各年龄段都有且结构相当. 这种思想就是我们要介绍的另一个抽样方法:分层抽样 二、二、 启发引导,总结方法启发引导,总结方法 【活

9、动一】你能用自己的语言归纳总结出分层抽样的方法吗【活动一】你能用自己的语言归纳总结出分层抽样的方法吗? ? 【学生】【学生】思考,讨论,归纳. . 【教师】【教师】整理:当已知总体由差异明显的几部分组成时,为了使样本 更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明,互 不交叉的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫 做分层抽样,其中所分成的各部分叫“层” 1 1、分层抽样、分层抽样 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例, 新人教版高中数学优质公开课精品教案及点评资料 从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本, 这种

10、抽样方法是一种分层抽样. 总结总结: : 分成互不交叉的层分成互不交叉的层:将相似的个体归入一类,即为一层;分成互不交叉 的层是为了抽取过程中既不重复也不遗漏,从而确保了抽取样本的公平性; 分多少层要是具体情况而定.总的原则是:层内样本的差异要小,而层与层 间的差异尽可能地大,否则将失去分层的意义. 比例:比例:按照一定的比例抽取是指所有层都采用同一抽样比等可能抽样, 这样可以保证样本结构与总体结构的一致性,从而提高了样本的代表性; 各层独立地抽取各层独立地抽取:在分层抽样中,每一层内部都要独立地进行抽样,并 且为了确保抽样的随机性, 各层应分别按简单随机抽样或系统抽样的方法抽 取,因此,分层

11、抽样也是一种等概率抽样. 三、新知初用,示例练三、新知初用,示例练习习 例例 1 1:为了了解我区高中生 2400 人,初中生 10900 人,小学生 11000 人的近视情况,要从中抽取 1%的学生进行检查,设计一个抽样方案? 思考思考: : 你认为哪些因素可能影响学生的视力你认为哪些因素可能影响学生的视力? ? 为什么要这样取各学段的个体数为什么要这样取各学段的个体数? ? 分析角度分析角度: : 高中生、初中生和小学生的近视程度有差异,用简单随机 抽样或系统抽样所得样本中可能会出现高中生过少或绝大部分是初中生的 情况,所得样本代表性较差. 含有个体多的层,在样本中的代表也应该多, 即样本

12、在该层的个体数也应该多这样的样本才具有更好的代表性 解: (1)分三层:高中生、初中生、小学生 新人教版高中数学优质公开课精品教案及点评资料 (2)确定样本容量与总体的比例为 1% (3)利用抽样比确定各层应抽取的个体数: 高中生:24001%=24(人) 初中生:109001%=109(人) 小学生:110001%=110(人) (4)利用简单随机抽样或系统抽样的方法,从各层抽取 24 人、109 人 和 110 人; (5)然后将抽取的 24,109,110 人合在一起,就是所抽取的样本. 四、概括步骤,巩固深化四、概括步骤,巩固深化 【活动二】【活动二】根据问题情境和例 1 的分析,请同

13、学们归纳整理出分层抽 样的步骤. 1 1、分层抽样的步骤、分层抽样的步骤 11分层分层根据已有信息,将总体分成互不相交的层; 22定比定比根据总体中的个体数N与样本容量n确定抽样比 N n k ; 33定量定量确定第i层应该抽取的样本数kNn Ii ( i N为第i 层 所包含的个体数)使得各 i n之和为n; 44抽样抽样在各个层中,按步骤 3 中确定的数目在各层中随 机抽取个体; 55组样组样综合每层抽样,得到容量为n的样本. 五、引申对比,明晰方法五、引申对比,明晰方法 探究探究 1 1:简单随机抽样,系统抽样和分层抽样各有其特点和适用范围, 新人教版高中数学优质公开课精品教案及点评资料

14、 请对这三种方法进行比较,说说它们各自的优点和缺点. 类类 别别共同点共同点各自特点各自特点联联系系 适用适用 范围范围 简单随机简单随机 抽样抽样(1)抽样 过程中每个个 体被抽到的可 能性相等 (2)每次抽出 个体后不再将它放 回,即不放回抽样 从总体中逐个抽取 总体 个数较少 系统抽样系统抽样 将总体均分成几部 分,按预先制定的规则在 各部分抽取 在起始部分样 时采用简随机抽样 总体 个数较多 分层抽样分层抽样 将总体分成几层,分 层进行抽取 分层抽样时采 用简单随机抽样或 系统抽样 总体 由差异明 显的几部 分组成 总结总结 1用分层抽样从个体为 N 的总体中抽取一个容量为 n 的样本

15、时,在 整个抽样过程中每个个体被抽到的机会相等 2分层抽样是建立在简单随机抽样或系统抽样基础上的,由于它充 分利用了已知信息,考虑了保持样本结构与总体结构的一致性,因此它 获取的样本更具代表性,在实用中更为广泛 3简单随机抽样是基础,系统抽样与分层抽样是补充和发展,三者 相辅相成,对立统一 六、巩固新知,完善方法六、巩固新知,完善方法 例 2:为了了解某地区中小学生家庭教育投入的情况,设计一个样本容 量为总体中个体数量千分之一的抽样方案. 学生讨论个体的差异和分析产生差异的原因后补充数据. 例 2某地区中小学人数的分布情况如下表所示(单位:人) : 新人教版高中数学优质公开课精品教案及点评资料

16、 学段城市县镇农村 小学357000221600258100 初中22620013420011690 高中112000433006300 请根据上述基本数据,设计一个样本容量为总体中个体数量的千分之 一的抽样方案. 【设计意图】【设计意图】因为学生对分层抽样刚刚接触,还没有形成理性认识, 所以我鼓励学生相互交流,让他们先想、先说、先做,再规范学生的解题 过程,避免了老师的单独说教,既降低了学习难度,又激发了学习兴趣. 分析:题中给出的纵向分层与横向分层并不是按同一个标准分的,可分析:题中给出的纵向分层与横向分层并不是按同一个标准分的,可 以先纵向分层以先纵向分层,再横向分层再横向分层. .然后

17、在各层按千分之一的比例抽取样本然后在各层按千分之一的比例抽取样本,如果如果 某一层中的个体数除以某一层中的个体数除以 10001000 不是整数,提示学生应四舍五入取整不是整数,提示学生应四舍五入取整. . 解:因为城市、县镇与农村情况差异明显以及小学、初中、高中情况 差异明显,因而采用分层抽样的方法. (1)按分层抽样方法分为城市小学、城市初中、城市高中 等九层; (2)由题可知,抽样比 1000 1 k; (3)各层被抽个体数如下表 学段城市县镇农村 小学357222258 初中22613412 高中112436 (4)在各层用简单随机抽样方法确定选中学校,再从选中 新人教版高中数学优质公

18、开课精品教案及点评资料 学校中用简单随机抽样或系统抽样选取学生. (5)将抽取的 1370 人组到一起即得到样本,进行调查. 练习练习 1 1:某市的 3 个区共有高中学生 20000 人,且 3 个区的高中学生人 数之比为 235,现要从所有学生中抽取一个容量为 200 的样本,调查该 市高中学生的视力情况,试写出抽样过程 分析:分析:由于该市高中学生的视力有差异,按 3 个区分成三层,用分层 抽样来抽取样本在 3 个区分别抽取的学生人数之比也是 235,所以抽 取的学生人数分别是 200 532 2 =40; 200 532 3 =60; 200 532 5 =100 解:解:用分层抽样来

19、抽取样本,步骤是: (1)分层:按区将 20 000 名高中生分成三层. (2)确定每层抽取个体的个数在这 3 个区抽取的学生数目分别是 40、 60、100 (3)在各层分别按随机数表法抽取样本. (4)综合每层抽样,组成样本 六、六、 归纳小结,布置作业归纳小结,布置作业 1 1:请同学们对本节我们学习的过程梳理一下?:请同学们对本节我们学习的过程梳理一下? (1)知识内容 分层抽样的定义 分层抽样中分多少层、如何分层要视具体情况而定,要尽量利用调查 者对调查对象(总体)事先掌握的各种信息. 为了保证每个个体等可能入样,所有层应采用同一抽样比等可能抽样. 在每层抽样时,应采用简单随机抽样或

20、系统抽样的方法进行抽样. 分层抽样的步骤 新人教版高中数学优质公开课精品教案及点评资料 分层、定比、定量、抽样、组样 (2)思想方法 统计思想、类比思想、随机思想. (3 3)现实生活中的广泛应用)现实生活中的广泛应用: : 分层抽样在保险索赔处理正确性评价中的应用. 烟草行业终端营销系统零售户分层抽样. 2 2、布置作业布置作业 (1)必做题:教材 习题 2.1 A 组 第 5 题 (2)探究题:你可能想了解很多问题,比如,全班同学比较喜欢哪门课 程,中学生每月的零花钱平均是多少,中学生每天大约什么时间起床,每天 睡眠时间是多少等.选一些自己关心的问题,设计一份调查问卷,利用抽样 方法调查我们学校的学生情况,并解释你所得到的结论.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文((新人教版高中数学公开课精品教案)分层抽样 教学设计(宁夏银川).docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|