( 高中数学讲义)排列与组合.版块二.乘法原理.学生版.doc

上传人(卖家):四川天地人教育 文档编号:1686212 上传时间:2021-08-26 格式:DOC 页数:6 大小:488KB
下载 相关 举报
( 高中数学讲义)排列与组合.版块二.乘法原理.学生版.doc_第1页
第1页 / 共6页
( 高中数学讲义)排列与组合.版块二.乘法原理.学生版.doc_第2页
第2页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、【学而思高中数学讲义】 知识内容 1基本计数原理 加法原理 分类计数原理:做一件事,完成它有n类办法,在第一类办法中有 1 m种不同的方法,在第 二类办法中有 2 m种方法,在第n类办法中有 n m种不同的方法那么完成这件事共有 12n Nmmm种不同的方法又称加法原理 乘法原理 分步计数原理:做一件事,完成它需要分成n个子步骤,做第一个步骤有 1 m种不同的方法, 做第二个步骤有 2 m种不同方法,做第n个步骤有 n m种不同的方法那么完成这件事 共有 12n Nmmm种不同的方法又称乘法原理 加法原理与乘法原理的综合运用 如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,

2、使用分类 计数原理如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事 才告完成,那么计算完成这件事的方法数时,使用分步计数原理 分类计数原理、分步计数原理是推导排列数、组合数公式的理论基础,也是求解排列、 组合问题的基本思想方法, 这两个原理十分重要必须认真学好, 并正确地灵活加以应用 2 排列与组合 排列: 一般地, 从n个不同的元素中任取()m mn个元素, 按照一定的顺序排成一列, 叫做从n个不同元素中取出m个元素的一个排列 (其中被取的对象叫做元素) 排列数:从n个不同的元素中取出()m mn个元素的所有排列的个数,叫做从n个不同 元素中取出m个元素的排列数,用符号Am

3、 n 表示 排列数公式:A(1)(2)(1) m n n nnnm,mn N,并且mn 全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列 n的阶乘:正整数由1到n的连乘积,叫作n的阶乘,用!n表示规定:0!1 组合:一般地,从n个不同元素中,任意取出m ()mn个元素并成一组,叫做从n个 元素中任取m个元素的一个组合 组合数:从n个不同元素中,任意取出m ()mn个元素的所有组合的个数,叫做从n个 不同元素中,任意取出m个元素的组合数,用符号Cm n 表示 乘法原理 【学而思高中数学讲义】 组合数公式: (1)(2)(1)! C !()! m n n nnnmn m

4、m nm ,,m n N,并且mn 组合数的两个性质:性质 1:CC mn m nn ;性质 2: 1 1 CCC mmm nnn (规定 0 C1 n ) 排列组合综合问题 解排列组合问题,首先要用好两个计数原理和排列组合的定义,即首先弄清是分类还是 分步,是排列还是组合,同时要掌握一些常见类型的排列组合问题的解法: 1特殊元素、特殊位置优先法 元素优先法:先考虑有限制条件的元素的要求,再考虑其他元素; 位置优先法:先考虑有限制条件的位置的要求,再考虑其他位置; 2分类分步法:对于较复杂的排列组合问题,常需要分类讨论或分步计算,一定要做 到分类明确,层次清楚,不重不漏 3排除法,从总体中排除

5、不符合条件的方法数,这是一种间接解题的方法 4捆绑法:某些元素必相邻的排列,可以先将相邻的元素“捆成一个”元素,与其它元 素进行排列,然后再给那“一捆元素”内部排列 5插空法:某些元素不相邻的排列,可以先排其它元素,再让不相邻的元素插空 6插板法:n个相同元素,分成()m mn组,每组至少一个的分组问题把n个元 素排成一排,从1n 个空中选1m 个空,各插一个隔板,有 1 1 m n C 7分组、分配法:分组问题(分成几堆,无序)有等分、不等分、部分等分之别一 般地平均分成n堆(组),必须除以n!,如果有m堆(组)元素个数相等, 必须除以m! 8错位法:编号为 1 至n的n个小球放入编号为 1

6、 到n的n个盒子里,每个盒子放一个 小球,要求小球与盒子的编号都不同,这种排列称为错位排列,特别当2n ,3,4,5 时的错位数各为 1,2,9,44关于 5、6、7 个元素的错位排列的计算,可以用剔除法 转化为 2 个、3 个、4 个元素的错位排列的问题 1排列与组合应用题,主要考查有附加条件的应用问题,解决此类问题通常有三种途 径: 元素分析法:以元素为主,应先满足特殊元素的要求,再考虑其他元素; 位置分析法:以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置; 间接法:先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组 合数 求解时应注意先把具体问题转化或归结为排列或

7、组合问题; 再通过分析确定运用分类计 数原理还是分步计数原理;然后分析题目条件,避免“选取”时重复和遗漏;最后列出式 子计算作答 2具体的解题策略有: 对特殊元素进行优先安排; 理解题意后进行合理和准确分类,分类后要验证是否不重不漏; 对于抽出部分元素进行排列的问题一般是先选后排,以防出现重复; 对于元素相邻的条件, 采取捆绑法; 对于元素间隔排列的问题, 采取插空法或隔板法; 顺序固定的问题用除法处理;分几排的问题可以转化为直排问题处理; 对于正面考虑太复杂的问题,可以考虑反面 对于一些排列数与组合数的问题,需要构造模型 【学而思高中数学讲义】 典例分析 乘法原理 【例 1】 公园有4个门,

8、从一个门进,一个门出,共有_种不同的走法 【例 2】 将3个不同的小球放入4个盒子中,则不同放法种数有_ 【例 3】 如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排 一所学校,要求甲学校连续参观两天,其余两所学校均只参观一天,那么不同的安 排方法共有种 【例 4】 高二年级一班有女生18人,男生38人,从中选取一名男生和一名女生作代表,参 加学校组织的调查团,问选取代表的方法有几种 【例 5】 六名同学报名参加三项体育比赛,每人限报一项,共有多少种不同的报名结果? 【例 6】 六名同学参加三项比赛,三个项目比赛冠军的不同结果有多少种? 【学而思高中数学讲义】 【例 7

9、】 用1,2,3,4,5,6组成六位数(没有重复数字) ,要求任何相邻两个数字的 奇偶性不同,且1和2相邻,这样的六位数的个数是_(用数字作答) 【例 8】 从集合1 2 311, , , ,中任选两个元素作为椭圆方程 22 22 1 xy mn 中的m和n,则 能组成落在矩形区域()| 11Bxyx,且| 9y 内的椭圆个数为() A43B72 C86D90 【例 9】 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“同族 函数” ,那么函数解析式为 2 yx ,值域为 19,的“同族函数”共有() A7个B8个C9个D10个 【例 10】某银行储蓄卡的密码是一个4位数码

10、,某人采用千位、百位上的数字之积作为 十位和个位上的数字(如2816)的方法设计密码,当积为一位数时,十位上数字 选0,并且千位、百位上都能取0这样设计出来的密码共有() A90个B99个 C100个D112个 【学而思高中数学讲义】 【例 11】从集合 4321 0 1 2 3 4 5, , , , ,中,选出5个数组成子集,使得这5 个数中的任何两个数之和不等于1,则取出这样的子集的个数为() A10B32C110 D220 【例 12】若x、y是整数,且6x,7y,则以(),xy为坐标的不同的点共有多少 个? 【例 13】用0,1,2,3,4,5这6个数字: 可以组成_个数字不重复的三位数 【学而思高中数学讲义】 可以组成_个数字允许重复的三位数 【例 14】六名同学报名参加三项体育比赛,共有多少种不同的报名结果? 【例 15】将3名教师分配到2所中学任教,每所中学至少一名教师,则不同的分配方案 共有()种 A5B6C7D8

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 一轮复习
版权提示 | 免责声明

1,本文(( 高中数学讲义)排列与组合.版块二.乘法原理.学生版.doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|