1、高二级期中质量测试数学科试题参考答案(第 1页共 4 页) 20202021 学年度第一学期期中高中二年级质量测试 数学科试题参考答案 一、填空题: 二、多选题 三、填空题 (13) 2 1 2xx(14)0.(15)6 .(16), 4 12 n 2) 1(2 1 n n 四、解答题四、解答题: : 17(本小题满分 10 分) 解: (1)由余弦定理得,cos2 222 Abccba1 分 又,3 222 bcacb 3cos2A3 分 2 3 cosA,又 A 为三角形 ABC 的内角4 分 2 1 sinA 5 分 (2)ABC外接圆的面积为16,设该圆半径为 R R=4 6 分 由正
2、弦定理得:82 sin R A a ?,9 分 由(1)得4a10 分 18. (本小题满分 12 分) 解(1)证明: 2 3a , 21 21aa, 1 1a ,1 分 题号12345678 答案ADBACDAB 9101112 ABCBCACDABD 高二级期中质量测试数学科试题参考答案(第 2页共 4 页) 由题意得10 n a , 1 122 2 11 nn nn aa aa ,4 分 1 n a 是首项为 2,公比为2的等比数列. 5 分 (2)由(1)12n n a ,6 分 21 n n a . 7 分 1 1 22 22 1 2 n n n Snn ,9 分 1 2222 2
3、10 nn nn nSann ,11 分 2 nn nSa,即n, n a, n S成等差数列.12 分 19. (本小题满分 12 分) 解:(1)已知x2,x-20. 1 分 4 2 1 x x8 2 1 )2(4 x x2 分 4 2 1 )2(4 x x,3 分 当且仅当 2 1 )2(4 x x,即x 2 3 时等号成立4 分 4 2 1 )2(4 x x5 分 4 2 1 x x48 2 1 )2(4 x x6 分 x2,求 4 2 1 x x的最大值为 4 7 分 (2)解:54xyyx, xyxyyxxy442458 分 当且仅当x4y,54xyyx 即 2 2 1 x y 时
4、,等号成立。9 分 054xyxy11 分 1xy xy 的最大值为 1 12 分 高二级期中质量测试数学科试题参考答案(第 3页共 4 页) 20 解:由题意知 5 33AB=海里, 906030 ,45 ,DBADAB 1 分 105ADB2 分 在DAB中,由正弦定理得 sinsin DBAB DABADB 3 分 sin5(33) sin455(33) sin45 sinsin105sin45cos60sin60cos45 ABDAB DB ADB = 5 3(13) 10 3 (13) 2 (海里) ,7 分 又30(9060 )60 ,20 3DBCDBAABCBC 海里,8 分
5、在DBC中,由余弦定理得 222 2cosCDBDBCBD BCDBC = 1 300 12002 10 320 3900 2 10 分 CD30(海里) ,则需要的时间 30 1 30 t (小时) 11 分 答:救援船到达D点需要 1 小时12 分 21 (本小题满分 12 分) 解、()an 1 2 Sn1 an-1 1 2 Sn-11(n2) 1 分 -得:an2an-1(n2) ,又易得 a12an2 n 4 分 () bnn, 1 (2) nc n n 1 11 () 22nn 6 分 裂项相消可得 1111 (1) 2212 nT nn 3111 () 4212nn 8 分 1
6、313 , 434 nnTTT即 10 分 欲 13 2424 n kk T 对 nN *都成立,须 1 324 5 313 424 k k k 得, 高二级期中质量测试数学科试题参考答案(第 4页共 4 页) 又 k 正整数,k=5、6、712 分 22 解:若a0,原不等式等价于x11. 2 分 若a0, 解得x1. 4 分 若a0,原不等式等价于(x1 a)(x1)0. 5 分 当a1 时,1 a1,(x 1 a)(x1)1 时,1 a1,解(x 1 a)(x1)0,得 1 ax1; 9 分 当 0a1,解(x 1 a)(x1)0,得 1x 1 a. 11 分 综上所述,当a0 时,解集为x|x1; 当a0 时,解集为x|x1; 当 0a1 时,解集为x|1x1 时,解集为x|1 ax1 12 分