1、本节内容的重点是等腰三角形的判定定理.本定理是证明两条线段相等的重要定理,它是把三角形中角的相等关系转化为边的相等关系的重要依据,此定理为证明线段相等提供了又一种方法,这是本节的重点.推论 1、2 提供证明等边三角形的方法,推论 3 是直角三角形的一条重要性质,在直角三角形中找边和角的等量关系经常用到此推论.本节内容的难点是性质与判定的区别。等腰三角形的性质定理和判定定理是互逆定理,题设与结论正好相反.学生在应用它们的时候,经常混淆,帮助学生认识判定与性质的区别,这是本节的难点.另外本节的文字叙述题也是难点之一,和上节结合让学生逐步掌握解题的思路方法.由于知识点的增加,题目的复杂程度也提高,一
2、定要学生真正理解定理和推论,才能在解题时从条件得到用哪个定理及如何用.教法建议:本节课教学方法主要是本节课教学方法主要是“以学生为主体的讨论探索法以学生为主体的讨论探索法”。在。在数学数学教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,教学中要避免过多告诉学生现成结论。提倡教师鼓励学生讨论解决问题的方法,引导他们探索引导他们探索数学数学的内在规律。具体说明如下:的内在规律。具体说明如下:(1)参与探索发现,领略知识形成过程学生学生学习学习过互逆命题和互逆定理的概念,首先提出问题:等腰过互逆命题和互逆定理的概念,首先提出问题:等腰三角形性质定理的逆命题的什么?找一名学生口述
3、完了,接下来问:此命题是否三角形性质定理的逆命题的什么?找一名学生口述完了,接下来问:此命题是否为真命?等同学们证明完了,找一名学生代表发言为真命?等同学们证明完了,找一名学生代表发言. .最后找一名学生用文字口述定最后找一名学生用文字口述定理的内容。这样很自然就得到了等腰三角形的判定定理理的内容。这样很自然就得到了等腰三角形的判定定理. .这样让学生亲自动手实这样让学生亲自动手实践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰践,积极参与发现,满打满算了学生的认识冲突,使学生克服思维和探求的惰性,获得锻炼机会,对定理的产生过程,真正做到心领神会。性,获得锻炼机会,对定理的
4、产生过程,真正做到心领神会。(2 2)采用)采用“类比类比”的的学习学习方法,获取知识。方法,获取知识。由性质定理的由性质定理的学习学习,我们得到了几个推论,自然想到:根据等,我们得到了几个推论,自然想到:根据等腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让腰三角形的判定定理,我们能得到哪些特殊的结论或者说哪些推论呢?这里先让学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推学生发表意见,然后大家共同分析讨论,把一些有价值的、甚至就是教材中的推论板书出来。如果学生提到的不完整,教师可以做适当的点拨引导。论板书出来。如果学生提到的不完整,教师可以做适当
5、的点拨引导。(3)总结,形成知识结构为了使学生对本节课有一个完整的认识,便于今后的应用,教师提出如下问题,让学生思考回答:(1)怎样判定一个三角形是等腰三角形?有哪些定理依据?(2)怎样判定一个三角形是等边三角形?一一教学目标教学目标:1使学生掌握等腰三角形的判定定理及其推论;2掌握等腰三角形判定定理的运用;3 3通过例题的通过例题的学习学习,提高学生的逻辑思维能力及分析问题解决,提高学生的逻辑思维能力及分析问题解决问题的能力;问题的能力;4 4通过自主通过自主学习学习的发展体验获取的发展体验获取数学数学知识的感知识的感受;受;5 5通过知识的纵横迁移感受通过知识的纵横迁移感受数学数学的辩证特
6、征的辩证特征. .二二教学重点教学重点:等腰三角形的判定定理等腰三角形的判定定理三三教学难点教学难点:性质与判定的区别性质与判定的区别四教学用具:直尺,微机五教学方法:以学生为主体的讨论探索法六六教学过程教学过程:1、新课背景知识复习(1)请同学们说出互逆命题和互逆定理的概念估计学生能用自己的语言说出,这里重点复习怎样分清题设和结论。(2)等腰三角形的性质定理的内容是什么?并检验它的逆命题是否为真命题?启发学生用自己的语言叙述上述结论,教师稍加整理后给出规范叙述:1等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.(简称“等角对等边”)由学生说出已知、求证,使学生进
7、一步熟悉文字转化为由学生说出已知、求证,使学生进一步熟悉文字转化为数学数学语语言的方法言的方法. .已知:如图,ABC 中,B=C求证:AB=AC教师可引导学生分析:联想证有关线段相等的知识知道,先需构成以 AB、AC 为对应边的全等三角形因为已知B=C,没有对应相等边,所以需添辅助线为两个三角形的公共边,因此辅助线应从 A 点引起再让学生回想等腰三角形中常添的辅助线,学生可找出作BAC 的平分线 AD 或作 BC 边上的高 AD 等证三角形全等的不同方法,从而推出AB=AC注意:(1)要弄清判定定理的条件和结论,不要与性质定理混淆(2)不能说“一个三角形两底角相等,那么两腰边相等”,因为还未
8、判定它是一个等腰三角形(3)判定定理得到的结论是三角形是等腰三角形,性质定理是已知三角形是等腰三角形,得到边边和角角关系.2推论 1:三个角都相等的三角形是等边三角形推论 2:有一个角等于 60的等腰三角形是等边三角形要让学生自己推证这两条推论小结:证明三角形是等腰三角形的方法:等腰三角形定义;等腰三角形判定定理证明三角形是等边三角形的方法:等边三角形定义;推论 1;推论 23应用举例例 1.求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形分析:让学生画图,写出已知求证,启发学生遇到已知中有外角时,常常考虑应用外角的两个特性它与相邻的内角互补;它等于与它不相邻的两
9、个内角的和要证 AB=AC,可先证明B=C,因为已知1=2,所以可以设法找出B、C 与1、2 的关系已知:CAE 是ABC 的外角,1=2,ADBC求证:AB=AC证明:(略)由学生板演即可补充例题:(投影展示)1.已知:如图,AB=AD,B=D求证:CB=CD分析:解具体问题时要突出边角转换环节,要证 CB=CD,需构造一个以 CB、CD为腰的等腰三角形,连结 BD,需证CBD=CDB,但已知B=D,由 AB=AD 可证ABD=ADB,从而证得CDB=CBD,推出 CB=CD证明:连结 BD,在 中, (已知)(等边对等角)(已知)即(等教对等边)小结:求线段相等一般在三角形中求解,添加适当的辅助线构造三角形,找出边角关系.2已知,在 中, 的平分线与 的外角平分线交于 D,过 D 作 DE/BC 交 AC 与F,交 AB 于 E,求证:EF=BE-CF.分析:对于三个线段间关系,尽量转化为等量关系,由于本题有两个角平分线和平行线,可以通过角找边的关系,BE=DE,DF=CF 即可证明结论.证明: DE/BC(已知),BE=DE,同理 DF=CF.EF=DE-DFEF=BE-CF小结:(1)等腰三角形判定定理及推论(2)等腰三角形和等边三角形的证法七练习教材 P75 中 1、2、3八作业教材 P83 中 11)、2)、3);2、3、4、5