微积分下册常微分方程课件:5.全微分方程.PPT

上传人(卖家):罗嗣辉 文档编号:2039717 上传时间:2022-01-19 格式:PPT 页数:20 大小:1.55MB
下载 相关 举报
微积分下册常微分方程课件:5.全微分方程.PPT_第1页
第1页 / 共20页
微积分下册常微分方程课件:5.全微分方程.PPT_第2页
第2页 / 共20页
微积分下册常微分方程课件:5.全微分方程.PPT_第3页
第3页 / 共20页
微积分下册常微分方程课件:5.全微分方程.PPT_第4页
第4页 / 共20页
微积分下册常微分方程课件:5.全微分方程.PPT_第5页
第5页 / 共20页
点击查看更多>>
资源描述

1、一、全微分方程及其求法一、全微分方程及其求法;),(Cyxu 1.1.定义定义: :0),(),( dyyxQdxyxP则则dyyxQdxyxPyxdu),(),(),( 若有全微分形式若有全微分形式例如例如, 0 ydyxdx221( , )(),2u x yxy称为全微分方程称为全微分方程或恰当方程或恰当方程是全微分方程是全微分方程.xQyP 全微分方程全微分方程全微分方程的通解即为全微分方程的通解即为221()2xyC其通解为其通解为2.2.解法解法: :0),(),( dyyxQdxyxP应用曲线积分与路径无关应用曲线积分与路径无关.xQyP yyxxdyyxQxdyxPyxu00),

2、(),(),(0,),(),(000 xdyxPdyyxQxxyy 用直接凑用直接凑全微分的方法全微分的方法.是全微分方程是全微分方程( , )uP x yx( , )( , )( )u x yP x y dxC y再由再由( , )uQ x yy( )C y(不定积分法(不定积分法)(曲线积分法(曲线积分法)(凑微分法(凑微分法).0)3()3(2323的通解的通解求方程求方程 dyyxydxxyx解解,6xQxyyP 是全微分方程是全微分方程, yxdyyxdxyxyxu03023)3(),(.42344224Cyyxx 原方程的通解为原方程的通解为,42344224yyxx 例例1 1.

3、0324223的通解的通解求方程求方程 dyyxydxyx解解,64xQyxyP 是全微分方程是全微分方程,将左端重新组合将左端重新组合)32(14232dyyxdxyxdyy )()1(32yxdyd .132Cyxy 原方程的通解为原方程的通解为),1(32yxyd 例例2二、积分因子法二、积分因子法定义定义: : 0),( yx 连续可微函数,使方程连续可微函数,使方程0),(),(),(),( dyyxQyxdxyxPyx成为全成为全微分方程微分方程. .则称则称),(yx 为方程的为方程的积分因子积分因子. .问题问题: 如何求方程的积分因子如何求方程的积分因子?1.1.公式法公式法

4、: :,)()(xQyP xQxQyPyP ,两边同除两边同除 xQyPyPxQ lnln求解不容易求解不容易特殊地特殊地:;.有关时有关时只与只与当当xa , 0 y ,dxdx ;.有关时有关时只与只与当当yb ln1()dPQdxQyx( )f x.)()( dxxfex , 0 x ,dydy ln1()dQPdyPxy( )g y.)()( dyygey 2.2.观察法观察法: :凭观察凑微分得到凭观察凑微分得到),(yx 常见的全微分表达式常见的全微分表达式 222yxdydyxdx xydxydxxdy2 xydyxydxxdyarctan22 xydxyydxxdyln )ln

5、(212222yxdyxydyxdx yxyxdyxydxxdyln2122可选用的积分因子有可选用的积分因子有.,1,1,1,12222222等等xyyxyxyxxyx .0)()3(22的通解的通解求微分方程求微分方程 dyxyxdxyxy解解,1)(1xxQyPQ dxxex1)( .x 例例3则原方程为则原方程为, 0)()3(2322 dyyxxdxxyyx, 0)()3(2322 dyyxxdxxyyx)(332xdyydxxydyxydxx )(21(23xyyxd , 0 原方程的通解为原方程的通解为.)(2123Cxyyx .0)1(222的通解的通解 dyyxdxyxx解解

6、将方程左端重新组合将方程左端重新组合,有有例例4 求微分方程求微分方程, 02222 dyyxdxyxxxdx, 0)()(2222 dyyxxdyxxd, 0)()(222 yxdyxxd原方程的通解为原方程的通解为.)(322322Cyxx .0)1(ln2222的通解的通解 dyyyxydxxy解解将方程左端重新组合将方程左端重新组合,有有, 01)ln2222 dyyydyxydxxy(,1),(yyx 易知易知, 01)ln2(22 dyyydyyxydxx则则. 0)1(31)ln(2322 ydyxd即即原方程的通解为原方程的通解为.)1(31ln2322Cyyx 例例5 求微分

7、方程求微分方程.132的通解的通解求微分方程求微分方程xyxxdxdy 解解1整理得整理得,112xyxdxdy A A 常数变易法常数变易法: :B B 公式法公式法: :.4343Cxxxyy 通解为通解为.1xCy 对应齐方通解对应齐方通解.1)(xxCy 设设.43)(43CxxxC ,11211Cdxexeydxxdxx 例例6解解2 2整理得整理得, 0)1()(32 dyxdxyxx,1xQyP .是全微分方程是全微分方程A A 用曲线积分用曲线积分法法: :,)1()(),(0032 yxdyxdxxxyxuB B 凑微分法凑微分法: :, 0)(32 dxxdxxydxxdy

8、dy,043)(43 xdxdxyddy. 0)43(43 xxxyydC C 不定积分不定积分法法: :,32yxxxu dxyxx)(32),(4343yCxyxx ),(yCxyu ,1xyu 又又,1)(xyCx , 1)( yC,)(yyC 原方程的通解为原方程的通解为.4343Cxxxyy 三、一阶微分方程小结三、一阶微分方程小结分离变量法分离变量法常数变易法常数变易法全微分方程全微分方程一阶微分方程一阶微分方程一、一、 判别下列方程中哪些是全微分方程判别下列方程中哪些是全微分方程, ,并求全微分方并求全微分方程的通解程的通解: :1 1、0)2( dyyxedxeyy;2 2、0

9、)(22 xydydxyx;3 3、02)1(22 dede. .二、二、 利用观察法求出下列方程的积分因子利用观察法求出下列方程的积分因子, ,并求其通并求其通解解: :1 1、02 xdxyxdyydx;2 2、dxyxydyxdx)(22 ; 3 3、0)1()1( xdyxyydxxy. .练练 习习 题题三、三、 验证验证)()(1xygxyfxy 是微分方程是微分方程 0)()( dyxyxgdxxyyf的积分因子的积分因子, ,并求方程并求方程0)22()2(2222 dyyxxdxyxy的通解的通解 . .四、四、 已知已知21)0( f, ,试确定试确定)(xf, ,使使0)()( dyxfydxxfex为全微分方程为全微分方程, ,并求此并求此全微分方程的通解全微分方程的通解 . .练习题答案练习题答案一、一、1 1、Cyxey 2; 2 2、不是全微分方程;、不是全微分方程; 3 3、Ce )1(2 . .二、二、1 1、Cxyx 22; 2 2、xCeyx222 ; 3 3、xyCeyx1 . .三、三、2212yxeCyx . .( (或或Cyxyx 22211ln) )四、四、Cyxexexfxx )21(, )21()(. .

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(微积分下册常微分方程课件:5.全微分方程.PPT)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|