1、( )( )x nX z序列的z变换:( )( )aax tXs连续时间信号的Laplace变换:( )()aax tXj连续时间信号的Fourier变换:( )( )staaXsx t edt ( )() ()aanx tx nTtnT() ()stanx nTtnT edt 其Laplace变换:()()stanx nT etnT dt ()snTanx nT e ( )()ax nx nT抽样序列:( )()nanX zx nT z( )( )sTazeX zXs当时,( )()snTaanXsx nT e其z变换:比较理想抽样信号的Laplace变换:得:z平面: (极坐标)jzre(
2、)sTjTTj Teeee jzreTreT ( )()( )sTsTaz eX zX eXs即:是复平面s平面到z平面的映射:sj (直角坐标)s平面:抽样序列的z变换=理想抽样信号的Laplace变换sTze当时TreT /TT3 /TT /3 /TT( )( )sTazeX zXs当时,1( )()aaskXsXsjkT而112( )()sTasaz ekkX zXsjkXsjkTTT( )()()j Tj Taz eX zX eXj( )asjXs Fourier变换是Laplace变换在虚轴上的特例。即: s=jj Tze映射到z平面为单位圆序列的Fourier变换单位圆上序列的z变换()jX e()( )jjz eX eX zT 数字域频率:1()askXjjkT2sT 为周期12akkXjTT()()j TaX eXj