1、二、第二类换元法二、第二类换元法第二节一、第一类换元法一、第一类换元法机动 目录 上页 下页 返回 结束 换元积分法 第四四章 第二类换元法第二类换元法第一类换元法第一类换元法xxxfd)()(uufd)(基本思路基本思路 机动 目录 上页 下页 返回 结束 设, )()(ufuF)(xu可导,xxxfd)()(CxF)()(d)(xuuuf)()(xuCuF)(dxFxxxfd)()(则有一、第一类换元法一、第一类换元法定理定理1.,)(有原函数设uf,)(可导xu则有换元公式xxxfd)()(uufd)()(xu)(d)(xxf(也称配元法配元法即xxxfd)()(, 凑微分法凑微分法)机
2、动 目录 上页 下页 返回 结束 例例1. 求).1(d)(mxbxam解解: 令,bxau则,ddxau 故原式原式 =muuad1a1Cumm1111)() 1(1mbxamaC注注: 当1m时bxaxdCbxaaln1机动 目录 上页 下页 返回 结束 22)(1d1axxa例例2. 求.d22xax解解:22dxax,axu 令则xaud1d21uuda1Cuaarctan1Caxa)arctan(1想到公式21duuCu arctan)(ax机动 目录 上页 下页 返回 结束 例例3. 求).0(d22axax21duu想到Cu arcsin解解:2)(1daxax)(d)(xxf(
3、直接配元)xxxfd)()(2)(1)(daxaxCax arcsin22dxax机动 目录 上页 下页 返回 结束 例例4. 求.dtanxx解解:xxxdcossinxxcoscosdCx cosln?dcotxxxxxsindcosCx sinlnxxsinsindxxdtan机动 目录 上页 下页 返回 结束 类似Caxaxaln21例例5. 求.d22axx解解:221ax )(axax)()(axaxa21)11(21axaxa 原式原式 =a21axxaxxdda21axax)(da21ax lnax lnCaxax)( d机动 目录 上页 下页 返回 结束 常用的几种配元形式常
4、用的几种配元形式: xbxafd)() 1 ( )(bxaf)(dbxa a1xxxfnnd)()2(1)(nxfnxdn1xxxfnd1)()3()(nxfnxdn1nx1万能凑幂法xxxfdcos)(sin)4()(sin xfxsindxxxfdsin)(cos)5()(cosxfxcosd机动 目录 上页 下页 返回 结束 xxxfdsec)(tan)6(2)(tan xfxtandxeefxxd)()7()(xefxedxxxfd1)(ln)8()(ln xfxlnd例例6. 求.)ln21 (dxxxxln21xlnd解解: 原式 =xln2121)ln21 (dxCx ln21l
5、n21机动 目录 上页 下页 返回 结束 例例7. 求.d3xxex解解: 原式 =xexd23)3d(323xexCex332例例8. 求.dsec6xx解解: 原式 =xdxx222sec) 1(tanxtandxxxtand) 1tan2(tan24x5tan51x3tan32xtanC机动 目录 上页 下页 返回 结束 例例9. 求.1dxex解法解法1xex1dxeeexxxd1)1 (xdxxee1)1 (dxCex)1ln(解法解法2 xex1dxeexxd1xxee1)1 (dCex)1ln()1(ln)1ln(xxxeee两法结果一样机动 目录 上页 下页 返回 结束 xxs
6、in11sin1121例例10. 求.dsecxx解法解法1 xxdsecxxxdcoscos2xx2sin1sindxsindxsin1ln21Cxsin1lnCxxsin1sin1ln21机动 目录 上页 下页 返回 结束 xxtansec解法解法 2 xxdsecxxdsecxxtansec )tan(secxxxxxxxxdtansectansecsec2)tan(secdxx Cxxtansecln同样可证xxdcscCxxcotcscln或xxdcscCx2tanln(P196 例16 )机动 目录 上页 下页 返回 结束 222d)(2123xax例例11. 求.d)(23223
7、xaxx解解: 原式 =23)(22ax22dxx21222)(aax21)(2122ax)(d22ax 23)(2222axa)(d22ax 22ax 222axaC机动 目录 上页 下页 返回 结束 )2cos2cos21 (241xx 例例12 . 求.dcos4xx解解:224)(coscosxx 2)22cos1(x)2cos21 (24cos141xx)4cos2cos2(212341xxxxdcos4xxxd)4cos2cos2(21234141xd23)2d(2cosxx)4(d4cos81xxx83x2sin41x4sin321C机动 目录 上页 下页 返回 结束 例例13.
8、 求.d3cossin22xxx解解:xx3cossin22221)2sin4(sinxx xxxx2sin2sin4sin24sin24141241)8cos1 (81xxx2cos2sin2)4cos1 (81x原式 =xd41)8d(8cos641xx)2(sind2sin221xx)4d(4cos321xxx41x8sin641x2sin361x4sin321C机动 目录 上页 下页 返回 结束 xxexex111xexexxxdd xexxd) 1(例例14. 求.d)1 (1xexxxx解解: 原式=xexxxxd)1 () 1(xexe)1 (1xxxexe)(d)111(xxx
9、exexex)1 (1xxxxxexexexe)(dxxexexlnxex1lnCCexxxx1lnln机动 目录 上页 下页 返回 结束 分析分析: 例例15. 求.d)()()()()(32xxfxfxfxfxf 解解: 原式原式)()(xfxfxxfxfxfxfxfd)()()(1)()(2 xxfxfxfxfd)()()()(22 Cxfxf2)()(21)()(d(xfxf机动 目录 上页 下页 返回 结束 )()(xfxf小结小结常用简化技巧:(1) 分项积分:(2) 降低幂次:(3) 统一函数: 利用三角公式 ; 配元方法(4) 巧妙换元或配元等xx22cossin1; )2co
10、s1 (sin212xx; )2cos1 (cos212xx万能凑幂法xxxfnnd)(1nnnxxfd)(1xxxfnd1)(nxnnxxfnd)(11机动 目录 上页 下页 返回 结束 利用积化和差; 分式分项;利用倍角公式 , 如思考与练习思考与练习1. 下列各题求积方法有何不同? xx4d) 1 (24d)2(xxxxxd4)3(2xxxd4)4(2224d)5(xx24d)6(xxxxx4)4(d22221)(1)d(xx22214)4(dxxxxd441241xx2121xd2)2(4x)2(dx机动 目录 上页 下页 返回 结束 xxxd) 1(1102. 求.) 1(d10 x
11、xx提示提示:法法1法法2法法3 ) 1(d10 xxx10)x ) 1(d10 xxx) 1(1010 xx ) 1(d10 xxx)1 (d1011xxx101x10d x10110(x10dx101作业 目录 上页 下页 返回 结束 二、第二类换元法二、第二类换元法机动 目录 上页 下页 返回 结束 第一类换元法解决的问题难求易求xxxfd)()(uufd)()(xu若所求积分xxxfd)()(易求,则得第二类换元积分法 .难求,uufd)(CxF)()()()(ttft定理定理2 . 设)(tx是单调可导函数 , 且,0)( t)()(ttf具有原函数 ,)(1d)()(d)(xttt
12、tfxxf.)()(1的反函数是其中txxt证证:的原函数为设)()(ttf, )(t令 )()(1xxF则)(xFtddxtdd)()(ttf)(1t)(xfxxfd)(Cx)(1Ct )(1xt)(1d)()(xttttf机动 目录 上页 下页 返回 结束 则有换元公式例例16. 求. )0(d22axxa解解: 令, ),(,sin22ttax则taaxa22222sintacosttaxdcosd 原式tacosttadcosttadcos22Ca242sin2ttax22xa taxarcsinCxax222122atttcossin22sin2axaxa22机动 目录 上页 下页
13、返回 结束 例例17. 求. )0(d22aaxx解解: 令, ),(,tan22ttax则22222tanataaxtasecttaxdsecd2 原式 ta2sectasectdttdsec1tanseclnCttax22ax tln22ax a)ln(1aCCCaxx22ln机动 目录 上页 下页 返回 结束 xa1C例例18. 求. )0(d22aaxx解解:,时当ax 令, ),0(,sec2ttax则22222secataaxtatanxdtttadtansec 原式td ttatansectatanttdsec1tanseclnCttax22ax t1 lnCCaxx22ln)l
14、n(1aCC机动 目录 上页 下页 返回 结束 22ax axa,时当ax令,ux,au 则于是22daxx22dauuCaxx22ln22daxx,时ax 122lnCauu122lnCaxx1222lnCaxxa)ln2(1aCCCaxx22ln机动 目录 上页 下页 返回 结束 说明说明:被积函数含有22ax 时, 除采用1shch22tt采用双曲代换taxsh消去根式 , 所得结果一致 . ( 参考书上 P201-P202 )taxch或22ax 或机动 目录 上页 下页 返回 结束 三角代换外, 还可利用公式原式21) 1(22ta221a例例19. 求.d422xxxa解解: 令,
15、1tx 则txtdd21原式ttd12tttad) 1(2122,0时当x42112tta Cata2223) 1(23当 x 0 时, 类似可得同样结果 .Cxaxa32223)(23) 1(d22ta机动 目录 上页 下页 返回 结束 小结小结:1. 第二类换元法常见类型第二类换元法常见类型: ,d),() 1 (xbaxxfn令nbxat,d),()2(xxfndxcbxa令ndxcbxat,d),()3(22xxaxf令taxsin或taxcos,d),()4(22xxaxf令taxtan或taxsh,d),()5(22xaxxf令taxsec或taxch机动 目录 上页 下页 返回
16、结束 第四节讲xxdtan)16(xxdcot)17(xxdsec)18(xxdcsc)19(Cx coslnCx sinlnCxx tanseclnCxxcotcscln机动 目录 上页 下页 返回 结束 2. 常用基本积分公式的补充 (P203)(7) 分母中因子次数较高时, 可试用倒代换倒代换 ,d)()6(xafx令xat xxad1)20(22xxad1)22(22xaxd1)23(22xaxd1)21(22Caxaarctan1Caxaxaln21CaxarcsinCaxx)ln(22xaxd1)24(22Caxx22ln机动 目录 上页 下页 返回 结束 .32d2 xxx解解:
17、 原式xxd2) 1(122)2() 1( dx21arctan21xC(P203 公式 (20) )机动 目录 上页 下页 返回 结束 例例20. 求例例21. 求.94d2xxI解解:223)2()2(d21xxICxx942ln212(P203 公式 (23) )例例22. 求.1d2xxx解解: 原式 =22)()()(d21x(P203 公式 (22) )2521xCx512arcsin机动 目录 上页 下页 返回 结束 例例23. 求.1d2xex解解: 原式xxee21dCexarcsin(P203 公式 (22) )例例24. 求.d222 axxx解解: 令,1tx 得原式t
18、tatd1221) 1(d2122222tataaCtaa11222Cxaax222机动 目录 上页 下页 返回 结束 ttttd)1(12132例例25. 求.2) 1(d23xxxx解解: 原式1) 1() 1(d23xxx令tx11tttd122tttd11)1 (22tt d12ttd112例例16tttarcsin121221Ct arcsinCxxxx1121) 1(221arcsin22例16 目录 上页 下页 返回 结束 思考与练习思考与练习1. 下列积分应如何换元才使积分简便 ?xxxd1) 1 (25xex1d)2( )2(d)3(7xxx令21xt令xet1令xt1机动
19、目录 上页 下页 返回 结束 2. 已知,1d)(25Cxxxfx求.d)(xxf解解: 两边求导, 得)(5xfx,12xx则1dd)(24xxxxxf)1(xt 令231dttt222d121ttt1(1)1 (d)1 (212221tt)1 (d)1 (212221tt23)1 (312tCt21)1 (2(代回原变量代回原变量) 机动 目录 上页 下页 返回 结束 作业作业P2042 (4) , (5) , (8) , (9) , (11) , (16) , (18) , (19) , (21) , (25) , (28) , (29) , (30) , (32) , (33) , (
20、35) , (36) , (40)第三节 目录 上页 下页 返回 结束 xxxd11) 132备用题备用题 1. 求下列积分:) 1(d113133xxCx1323xxxxd2132)22xxxd2125)22(x2221)21d(xxxx 52) 1(2 x) 1d( x2212xx Cx21arcsin5机动 目录 上页 下页 返回 结束 2. 求不定积分解:解:.dsin2sin1cossin222xxxxx利用凑微分法 ,xx22sin2sin1原式 =)sin1 (d2x令xt2sin1tttd1222ttd)111 (22t 2Ct arctan2Cxx22sin1arctansin12得机动 目录 上页 下页 返回 结束 分子分母同除以3.求不定积分解解:.d1)1 (122xxx令,sintx ,sin1122txttxdcosd 原式ttttdcos)sin1 (cos2ttdsin112t2costttandtan2112tttand)tan2(112221Ct )tan2arctan(21Cxx212arctan21机动 目录 上页 下页 返回 结束 ttttdtansecsec222