1、 第一章 二、二、 无穷大无穷大 三三 、 无穷小与无穷大的关系无穷小与无穷大的关系 一、一、 无穷小无穷小 第四节机动 目录 上页 下页 返回 结束 无穷小与无穷大当一、一、 无穷小无穷小定义定义1 . 若0 xx 时 , 函数,0)(xf则称函数)(xf0 xx 例如 :,0)1(lim1xx函数 1x当1x时为无穷小;,01limxx函数 x1x时为无穷小;,011limxx函数 x11当x)x(或为时的无穷小无穷小 .时为无穷小.)x(或机动 目录 上页 下页 返回 结束 说明说明: 除 0 以外任何很小的常数都不是无穷小 ! 因为0)(lim0 xfxx,0,0当00 xx时, 0)
2、(xf显然 C 只能是 0 !CC0 xx 时 , 函数,0)(xf(或 )x则称函数)(xf为0 xx 定义定义1. 若(或 )x则时的无穷小无穷小 .机动 目录 上页 下页 返回 结束 其中 为0 xx 时的无穷小量 . 定理定理 1 . ( 无穷小与函数极限的关系 )Axfxx)(lim0 Axf)(,证证:Axfxx)(lim0,0,0当00 xx时,有 Axf)(Axf)(0lim0 xx对自变量的其它变化过程类似可证 .机动 目录 上页 下页 返回 结束 Mxf)(二、二、 无穷大无穷大定义定义2 . 若任给任给 M 0 ,000 xx一切满足不等式的 x , 总有则称函数)(xf
3、当0 xx 时为无穷大, 使对.)(lim0 xfxx若在定义中将 式改为Mxf)(则记作)(lim)(0 xfxxx)(lim()(0 xfxxx)(Xx )(x)(lim(xfx(正数正数 X ) ,记作, )(Mxf总存在机动 目录 上页 下页 返回 结束 注意注意:1. 无穷大不是很大的数, 它是描述函数的一种状态.2. 函数为无穷大 , 必定无界 . 但反之不真 !例如例如, 函数),(,cos)(xxxxf)2(nf)(n当n2但0)(2nf所以x时 ,)(xf不是无穷大 !oxyxxycos机动 目录 上页 下页 返回 结束 例例 . 证明11lim1xx证证: 任给正数 M ,
4、 要使,11Mx即,11Mx只要取,1M则对满足10 x的一切 x , 有Mx11所以.11lim1xx11xy若 ,)(lim0 xfxx则直线0 xx 为曲线)(xfy 的铅直渐近线 .渐近线1说明说明:xyo机动 目录 上页 下页 返回 结束 三、无穷小与无穷大的关系三、无穷小与无穷大的关系若)(xf为无穷大,)(1xf为无穷小 ;若)(xf为无穷小, 且,0)(xf则)(1xf为无穷大.则(自证)据此定理 , 关于无穷大的问题都可转化为 无穷小来讨论.定理定理2. 在自变量的同一变化过程中,说明说明:机动 目录 上页 下页 返回 结束 内容小结内容小结1. 无穷小与无穷大的定义2. 无穷小与函数极限的关系Th13. 无穷小与无穷大的关系Th2思考与练习思考与练习P41 题1 , 3P41 题3 提示:21xy,21x210140 x 作业作业P41 2 (1) , (2) ; 7第五节 目录 上页 下页 返回 结束