1、. ,)()4.,)()3.),()2.DD,1)T乘此行列式乘此行列式等于用数等于用数一数一数中所有的元素都乘以同中所有的元素都乘以同列列行列式的某一行行列式的某一行等于零等于零则此行列式则此行列式完全相同完全相同列列如果行列式有两行如果行列式有两行行列式变号行列式变号列列互换行列式的两行互换行列式的两行即即式相等式相等行列式与它的转置行列行列式与它的转置行列kk ., )( , )( )8., )( )7., )( )6. )( )5行列式的值不变行列式的值不变对应的元素上去对应的元素上去行行后加到另一列后加到另一列然然的各元素乘以同一数的各元素乘以同一数行行把行列式的某一列把行列式的某一
2、列式之和式之和此行列式等于两个行列此行列式等于两个行列则则的元素都是两数之和的元素都是两数之和行行若行列式的某一列若行列式的某一列式为零式为零则此行列则此行列元素成比例元素成比例列列行列式中如果有两行行列式中如果有两行提到行列式符号的外面提到行列式符号的外面以以的所有元素的公因子可的所有元素的公因子可列列行列式中某一行行列式中某一行)余子式与代数余子式)余子式与代数余子式.,)1(1 的代数余子式的代数余子式叫做元素叫做元素;记;记的余子式,记作的余子式,记作阶行列式叫做元素阶行列式叫做元素列划去后,留下来的列划去后,留下来的行和第行和第所在的第所在的第阶行列式中,把元素阶行列式中,把元素在在
3、aAMAManjianijijijjiijijijij )关于代数余子式的重要性质)关于代数余子式的重要性质 ., 0;, 1., 0;,., 0;,11jijijijiDDAajijiDDAaijijjknkikijkinkki当当当当其中其中当当当当或或当当当当 ., , 2 , 1., 2 , 1, 0 .,122112222212111212111所得到的行列式所得到的行列式,换成常数项换成常数项列列中第中第)是把系数行列式)是把系数行列式(其中其中那么它有唯一解那么它有唯一解的系数行列式的系数行列式如果线性方程组如果线性方程组bbbjDnjDnjDDxDbxaxaxabxaxaxab
4、xaxaxanjjjnnnnnnnnnn 克拉默法则的理论价值克拉默法则的理论价值., 0., 22112222212111212111唯一唯一那么它一定有解,且解那么它一定有解,且解的系数行列式的系数行列式如果线性方程组如果线性方程组 Dbxaxaxabxaxaxabxaxaxannnnnnnnnn. 必为零必为零解,则它的系数行列式解,则它的系数行列式解或有两个不同的解或有两个不同的如果上述线性方程组无如果上述线性方程组无定理定理定理定理., 0. 0, 0, 0 221122221211212111那么它没有非零解那么它没有非零解的系数行列式的系数行列式如果齐次线性方程组如果齐次线性方程
5、组 Dxaxaxaxaxaxaxaxaxannnnnnnnn. 它的系数行列式必为零它的系数行列式必为零组有非零解,则组有非零解,则如果上述齐次线性方程如果上述齐次线性方程定理定理定理定理一、计算排列的逆序数一、计算排列的逆序数二、计算(证明)行列式二、计算(证明)行列式三、克拉默法则三、克拉默法则用定义计算(证明)用定义计算(证明)例例1用行列式定义计算用行列式定义计算?)(,321523114212)(33dxxfdxxxxxxf关键要求出关键要求出x的三次方及四次方系数的三次方及四次方系数-3及及2利用范德蒙行列式计算利用范德蒙行列式计算例例计算计算利用范德蒙行列式计算行列式,应根据范德
6、利用范德蒙行列式计算行列式,应根据范德蒙行列式的特点,将所给行列式化为范德蒙行列蒙行列式的特点,将所给行列式化为范德蒙行列式,然后根据范德蒙行列式计算出结果。式,然后根据范德蒙行列式计算出结果。.333222111222nnnDnnnn ,于是得到,于是得到增至增至幂次数便从幂次数便从则方则方若提取各行的公因子,若提取各行的公因子,递升至递升至而是由而是由变到变到序排列,但不是从序排列,但不是从次数自左至右按递升次次数自左至右按递升次方幂方幂数的不同方幂数的不同方幂中各行元素分别是一个中各行元素分别是一个10.1, 10, nnnDn解解.1333122211111!121212nnnnDnn
7、nn 上面等式右端行列式为上面等式右端行列式为n阶范德蒙行列式,由阶范德蒙行列式,由范德蒙行列式知范德蒙行列式知!.1 !2)!2()!1( !)1()2()24)(23()1()13)(12( !)(!1 nnnnnnnnxxnDjinjin评注评注本题所给行列式各行(列)都是某元本题所给行列式各行(列)都是某元素的不同方幂,而其方幂次数或其排列与范德蒙素的不同方幂,而其方幂次数或其排列与范德蒙行列式不完全相同,需要利用行列式的性质(如行列式不完全相同,需要利用行列式的性质(如提取公因子、调换各行(列)的次序等)将此行提取公因子、调换各行(列)的次序等)将此行列式化成范德蒙行列式列式化成范德
8、蒙行列式用化三角形行列式计算用化三角形行列式计算例例计算计算.43213213213211xaaaaaaxaaaaaxaaaaaxDnnnn 解解列列都都加加到到第第一一列列,得得将将第第1, 3 , 2 nxaaaxaxaaxaaxaxaaaaxDniinniinniinniin32121212111 提取第一列的公因子,得提取第一列的公因子,得.1111)(32222111xaaaxaaaxaaaaxDnnnniin 后后一一列列,得得倍倍加加到到最最列列的的将将第第列列,倍倍加加到到第第列列的的列列,将将第第倍倍加加到到第第列列的的将将第第)(1,3)(12)(11aaan . )()(
9、11 niiniiaxaxaxaaaaaxaaaxaxDnniin 23122121111010010001)(评注评注本题利用行列式的性质,采用本题利用行列式的性质,采用“化零化零”的方法,逐步将所给行列式化为三角形行列式的方法,逐步将所给行列式化为三角形行列式化零时一般尽量选含有的行(列)及含零较多化零时一般尽量选含有的行(列)及含零较多的行(列);若没有,则可适当选取便于化零的行(列);若没有,则可适当选取便于化零的数,或利用行列式性质将某行(列)中的某数的数,或利用行列式性质将某行(列)中的某数化为化为1 1;若所给行列式中元素间具有某些特点,则;若所给行列式中元素间具有某些特点,则应
10、充分利用这些特点,应用行列式性质,以达到应充分利用这些特点,应用行列式性质,以达到化为三角形行列式之目的化为三角形行列式之目的,得,得提取公因子提取公因子行中行中行,并从第行,并从第行都加到第行都加到第、的第的第将将dcbaD 114324用降阶法计算用降阶法计算例例计算计算.4abcdbadccdabdcbaD 解解,1111)(4abcdbadccdabdcbaD 列,得列,得列都减去第列都减去第、再将第再将第1432,0001)(4dadbdcdcbcacdcbcbdbabdcbaD 行展开,得行展开,得按第按第1.)(4dadbdccbcacdbcbdbadcbaD ,得得中中提提取取
11、公公因因子子行行行行,再再从从第第行行加加到到第第把把上上面面右右端端行行列列式式第第dcba 112,011)(dadbdccbcacddcbadcbaD 列,得列,得列减去第列减去第再将第再将第12行展开,得行展开,得按第按第1)()( )(22cbdadcbadcba )()(dcbadcbadcbadcba ,001)(4dacbdccbdacddcbadcbaD dacbcbdadcbadcbaD )(评注评注本题是利用行列式的性质将所给行列本题是利用行列式的性质将所给行列式的某行(列)化成只含有一个非零元素,然后式的某行(列)化成只含有一个非零元素,然后按此行(列)展开,每展开一次
12、,行列式的阶数按此行(列)展开,每展开一次,行列式的阶数可降低可降低 1阶,如此继续进行,直到行列式能直接阶,如此继续进行,直到行列式能直接计算出来为止(一般展开成二阶行列式)这种计算出来为止(一般展开成二阶行列式)这种方法对阶数不高的数字行列式比较适用方法对阶数不高的数字行列式比较适用5用递推法计算用递推法计算例例计算计算.21xaaaaxaaaaxaDnn 解解拆拆成成两两个个行行列列式式之之和和列列把把依依第第DnnaaaaaxaaaaaxaaaaaxaDnn121 .000121xaaaxaaaaxaaaaxann .1121DxaxxxDnnnn 从而从而得得列展开列展开第第右端的第
13、二个行列式按右端的第二个行列式按列列加到第加到第倍分别倍分别列的列的将第将第右端的第一个行列式右端的第一个行列式,1, 2 , 1)1(, nnn ,0000000001121DxaaxaxaxDnnnn 由此递推,得由此递推,得.,2122121212211DxxxaxxxaxxxDDxaxxxDnnnnnnnnnnn 于是于是如此继续下去,可得如此继续下去,可得DxxxxxaxxxaxxxaxxxDnnnnnnn23142122121 )(21213142122121xxxaxaxxxxxaxxxaxxxaxxxnnnnnn ).(323112121xxxxxxxxxaxxxnnnn 时,
14、还可改写成时,还可改写成当当021 xxxn).111(12121xxxaxxxDnnn 评注评注.1 1 .1,1 1的递推关系的递推关系列式更低阶行列式之间列式更低阶行列式之间阶行阶行,建立比,建立比阶更低阶的行列式表示阶更低阶的行列式表示比比用同样形式的用同样形式的阶行列式阶行列式时,还可以把给定的时,还可以把给定的有有之间的递推关系之间的递推关系阶行列式阶行列式与与建立了建立了阶行列式表示出来阶行列式表示出来用同样形式的用同样形式的行列式行列式阶阶质把所给的质把所给的本题是利用行列式的性本题是利用行列式的性 nnDnDnDnDnnnnn6用数学归纳法用数学归纳法7 加边法加边法.212
15、21211xaaaaxaaaaxaDnnnnn例例计算计算021xxxn设nnnnnxaaxaaaaaaxaD212212111110001计算行列式的方法比较灵活,同一行列式可计算行列式的方法比较灵活,同一行列式可以有多种计算方法;有的行列式计算需要几种方以有多种计算方法;有的行列式计算需要几种方法综合应用在计算时,首先要仔细考察行列式法综合应用在计算时,首先要仔细考察行列式在构造上的特点,利用行列式的性质对它进行变在构造上的特点,利用行列式的性质对它进行变换后,再考察它是否能用常用的几种方法换后,再考察它是否能用常用的几种方法小结小结242322214,8465335543211122 A
16、AAAD及分别求设四阶行列式当线性方程组方程个数与未知数个数相等、当线性方程组方程个数与未知数个数相等、且系数行列式不等于零时,可用克莱姆法则为且系数行列式不等于零时,可用克莱姆法则为了避免在计算中出现分数,可对有的方程乘以适了避免在计算中出现分数,可对有的方程乘以适当整数,把原方程组变成系数及常数项都是整数当整数,把原方程组变成系数及常数项都是整数的线性方程组后再求解的线性方程组后再求解.28)3(, 3)2(, 0)1( ),( fffxf使使求一个二次多项式求一个二次多项式例10例10解解设所求的二次多项式为设所求的二次多项式为,)(2cbxxaxf 由题意得由题意得,2839)3(,
17、324)2(, 0)1( cbafcbafcbaf., 的线性方程组的线性方程组数数这是一个关于三个未知这是一个关于三个未知cba.20,60,40, 020321 DDDD由克莱姆法则,得由克莱姆法则,得. 1, 3, 2321 DDcDDbDDa于是,所求的多项式为于是,所求的多项式为. 132)(2 xxxf第一章第一章 测试题测试题一、填空题一、填空题( (每小题每小题4 4分,共分,共4040分分) ) ijijnaDaaD则则若若, . 1 1322133213321,0, . 2xxxxxxxxxqpxxxxx列式列式则行则行的三个根的三个根是方程是方程设设行列式行列式 . 3
18、1000000001998000199700020001000D 4433221100000000 . 4ababbaba四阶行列式四阶行列式 443424144, . 5AAAAcdbaacbdadbcdcbaD则则设四阶行列式设四阶行列式的的符符号号为为在在五五阶阶行行列列式式中中3524415312 . 6aaaaa 的系数是中在函数221112 . 7xxxxxxxf abcdbadccdabdcba四阶行列式四阶行列式 . 8, . 9时时且且则当则当为实数为实数若若 baba010100 abba二、计算下列行列式二、计算下列行列式( (每小题每小题9 9分,共分,共1818分分)
19、 )0112210321011322211313211 . 15 D. .10121121iiiiiiiinnnn 次次对对换换后后变变为为排排列列可可经经排排列列xzzzyxzzyyxzyyyxDn . 2齐次方程组齐次方程组取何值取何值问问, 0200321321321xxxxxxxxx 有非零解?有非零解?三、解答题三、解答题(9(9分分)四、证明四、证明( (每小题每小题8 8分,共分,共2424分分) ) ; 0321321321321 . 12222222222222222 ddddccccbbbbaaaa .21 .10 ; 0 , 0 . 9 ; . 8 ; 2 . 7 ;. 6 ; 0 . 5 ; . 4 ; !1998 . 3 ; 0 . 2 ;1 . 122222 41413232 nndcbabbaabbaaan一、一、 . . 2 ;170 . 1zyyxzzxynn 二、二、. 00 或或三、三、测试题答案测试题答案