1、3.2 解一元一次方程(一) 合并同类项与移项第三章 一元一次方程 学练优七年级数学上(RJ) 教学课件第1课时 用合并同类项的方法解一元一次方程温故知新(1) 含有相同的_,并且相同字母的_也相 同的项,叫做同类项;(2) 合并同类项时,把各同类项的_相加减,字 母和字母的指数_.字母指数系数不变用合并同类项进行化简:(1) 3x 5x = _;(2) 3x + 7x = _;(3) y + 5y 2y =_;(4) _. yyy232312x4x4y y x + 2x + 4x = 140讲授新课讲授新课利用合并同类项解简单的一元一次方程一尝试把一元一次方程转化为 x = m 的形式.合作
2、探究方程的左边出现几个含x的项,该怎么办?它们是同类项,可以合并成一项!1407 x20 x分析:解方程,就是把方程变形,化归为 x = m (m为常数)的形式.合并同类项系数化为1依据:乘法对加法的分配律依据:等式性质2思考:上述解方程中的“合并”起了什么作用? 解方程中“合并”起了化简作用,把含有未知数的项合并为一项,从而达到把方程转化为ax = b的形式,其中a,b是常数,“合并”的依据是逆用分配律.解:合并同类项,得12.2x 系数化为1,得4.x 典例精析例1 解下列方程:52682xx(1) ;(2) .72.5 +31.515 46 3xxxx 解:合并同类项,得678.x 系数
3、化为1,得=13.x 解下列方程:变式训练11(1)15;24xxx221(2)4 23 .32xxx 解:(1)合并同类项,得115.2x 系数化为1,得30.x (2)合并同类项,得11.6x 去绝对值,得6.x 11.6x 系数化为1,得解下列方程:(1) 5x2x = 9; (2) .解:(1)合并同类项,得 3x=9,系数化为1,得 x=3.(2)合并同类项,得 2x=7,72321xx练一练系数化为1,得 7.2x 根据“总量=各部分量的和”列方程解决问题二 例2 足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3:5,一个足球表面一共有32个皮块,黑色皮块
4、和白色皮块各有多少个? 本题中已知黑、白皮块数目比为3:5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数白色皮块数32”列方程提示解:设黑色皮块有3x个,则白色皮块有5x个. 根据题意列方程 3x + 5x = 32, 解得 x = 4, 则黑色皮块有 3x = 12 (个), 白色皮块有 5x = 20 (个). 答:黑色皮块有12个,白色皮块有20个方法归纳:当题目中出现比例时,一般可通过间接设元,设其中的每一份为x,然后用含x的代数式表示各数量,根据等量关系,列方程求解. 例3 有一列数,按一定规律排列成1,3,9,27,81,243 , . 其中某三个相邻数的
5、和是1701,这三个数各是多少? 从符号和绝对值两方面观察,可发现这列数的排列规律:后面的数是它前面的数与3的乘积.如果三个相邻数中的第1个数记为x,则后两个数分别是3x,9x.提示由三个数的和是1701,得391701.xxx 合并同类项,得71701.x 系数化为1,得243.x 解:设所求的三个数分别是 .,3 ,9xxx答:这三个数是 243,729,2187.所以3729.x92187.x 实际问题一元一次方程设未知数 分析实际问题中的数量关系,利用其中的相等关系列出方程,是解决实际问题的一种数学方法.归纳:用方程解决实际问题的过程列方程解方程作答当堂练习当堂练习1. 下列方程合并同
6、类项正确的是下列方程合并同类项正确的是 ( ) A. 由由 3xx13,得,得 2x 4 B. 由由 2xx74,得,得 3x 3 C. 由由 1522x x,得,得 3x D. 由由 6x24x20,得,得 2x0D 3.某中学七年级(5)班共有学生56人,该班男生的人数是女生人数的2倍少1人设该班有女生有x人,可列方程为_. 2x-1+x=562.如果2x与x-3的值互为相反数,那么x等于()A-1 B1 C-3 D3 B4. 解下列方程:解下列方程: (1) 3x + 0.5x =10; (2) 6m1.5m2.5m =3; (3) 3y4y =2520.解:(1) x =4;(2) m
7、 = ;(3) y =45.32 5. 某洗衣厂2016年计划生产洗衣机25500台,其中型、型、型三种洗衣机的数量之比为1:2:14,这三种洗衣机计划各生产多少台?答:计划生产型洗衣机1500台,型洗衣机3000台,型洗衣机21000台.解:设计划生产型洗衣机x台,则计划生产型洗衣机2x台,型洗衣机14x台,依题意,得x+2x+14x=25500,解得x=1500, 则2x=3000,14x=21000.课堂小结课堂小结1. 解形如解形如“ax + bx + + mx = p”的一元一次方的一元一次方程程 的步骤的步骤.2. 用方程解决实际问题的步骤用方程解决实际问题的步骤.见学练优本课时练习课后作业课后作业