1、1.1.2导数的概念教材分析三维目标1、知识与技能: 通过大量的实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数。 2、过程与方法: 通过动手计算培养学生观察、分析、比较和归纳能力 通过问题的探究体会逼近、类比、以已知探求未知、从特殊到一般的数学思想方法 3、情感、态度与价值观: 通过运动的观点体会导数的内涵,使学生掌握导数的概念不再困难,从而激发学生学习数学的兴趣.教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的
2、瞬时变化率,并由此得出导数的概念教学建议导数是微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用导数概念是我们今后学习微积分的基础同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时
3、速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想教学中建议遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的“四主”原则以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念引导学生经历数学知识再发现的过程,让学生在参与中获取知识,发展思维,感悟数学通过多媒体弥补传统教学的不足,增强教学效果的直观性,帮助学生更好地理解无限逼近思想,揭示导数本质新课导入一1复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以
4、近似地表示瞬时速度(1)提问:请说出函数从x1到x2的平均变化率公式(2)提问:如果用x1与增量x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段 里的平均速度是零,而实际上运动员并不是静止的这说明平均速度不能准确反映他在这段时间里运动状态.(4)提问:用一个什么样的量来反映物体在某一时刻的运动状态?(5)提问:我们如何得到物体在某一时刻的瞬时速度?例如,要求物体在2S的瞬时速度,应该怎么解决?(6)我们一起来看物理中测即时速度(瞬时速度)的视频: (7)提问:这里所测得的真的是瞬时速度吗?(8)提问:怎样使平均速度更好的表示瞬时速度?(9)在学生回答的基础上讲述:真正的瞬时速度
5、根本无法通过仪器测定,我们将平均速度作为瞬时速度的近似值;为了使平均速度更好的表示瞬时速度,应该让时间间隔尽量小回答问题后理解:(1) (2) (3)学生在教师的讲述中思考用什么量来反映运动员的运动状态(4)让学生体会并明确瞬时速度的作用(5)学生思考(6)学生观看视频并思考(7)期望或引导答出“是平均速度”(8)学生回答,得出“时间间隔越小越好!”(9)学生体会教师所讲结论(1)复习过程应使学生明确函数的平均变化率表示(2)应使学生明确平均速度与瞬时速度的关系,为下一阶段实验活动作铺垫新课导入二(一)复习:平均变化率(二)探究:计算运动员在 这段时间里的平均速度,并思考以下问题:运动员在这段时间内使静止的吗?你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)= -4.9t2+6.5t+10的图像,结合图形可知, ,所以 ,虽然运动员在 这段时间里的平均速度为 ,但实际情况是运动员仍然运动,并非静止,可以说明用平均速度不能精确描述运动员的运动状态