1、AB问题:问题:A A、B B两点被池塘隔开如两点被池塘隔开如何测量何测量A A、B B两点距离呢?为什两点距离呢?为什么?么?ABC 在在ABAB外选一点外选一点C C,使使C C能直接到达能直接到达A A和和B B,连结连结ACAC和和BCBC,并分别找,并分别找出出ACAC和和BCBC的中点的中点M M、N.N.如果测出如果测出MNMN的长,就可的长,就可知知A A、B B两点的距离?为两点的距离?为什么?什么?MNABCDEBD是三角形的 中线DE是三角形的中位线中位线ABC 连结连结三角形三角形两边中点两边中点的线段叫做三的线段叫做三角形的中位线。角形的中位线。画出画出ABCABC中
2、所有的中中所有的中线线画出三角形的所有中线并说画出三角形的所有中线并说出中位线和中线的区别出中位线和中线的区别. .DEF观察猜想观察猜想在在ABCABC中,中位线中,中位线DE和边和边BC什么关系什么关系?DE和边和边BC关系关系数量关系数量关系:位置关系:位置关系:DEBCDE= BC.21ABCDE已知,如图:在已知,如图:在ABC中,中,D是是AB的中点,的中点,E是是AC的中点。的中点。求证:求证:DEBC,DE= BC.21证明一证明一证明二证明二ABCDE命题:三角形的中位线平行于第三边,命题:三角形的中位线平行于第三边,并且等于它的一半并且等于它的一半2121同样,过同样,过D
3、作作DFAC,交交BC于于F,则则BF=FC.四边形四边形DFCE是平行四边形,是平行四边形,DE=FC. FC= BC,DE= BC.(E )ABCDEF证明一:过证明一:过D作作DEBC,交,交AC于于E,D是是AB的中点,的中点,那么那么E是是AC的中点,的中点,D是是AB的中点的中点, DE与与DE重合,因此重合,因此DEBC.证明二:证明二:观察观察BACDEF延长延长DE到到F,使,使EF=DE,连结,连结CF.或过或过C作作CFAB,交,交DE的延长线于的延长线于F.自己自己完成完成证明证明过程过程三角形中位线定理三角形中位线定理:三角形的中位线平三角形的中位线平行于第三边,并且
4、等于它的一半行于第三边,并且等于它的一半用符号语言表示用符号语言表示AEEB,ADDC DEBC,DE= BC.21DABCEABC 在在ABAB外选一点外选一点C C,使使C C能直接到达能直接到达A A和和B B,连结连结ACAC和和BCBC,并分别找,并分别找出出ACAC和和BCBC的中点的中点M M、N.N.如果测出如果测出MNMN的长,就可的长,就可知知A A、B B两点的距离?为两点的距离?为什么?什么?MN例例1 求证:顺次连结四边形四条边的中点,求证:顺次连结四边形四条边的中点,所得的四边形是平行四边形所得的四边形是平行四边形.ABCDEFGH已知:如图,在四边形已知:如图,在
5、四边形ABCDABCD中,中,E E、F F、G G、H H分别是分别是ABAB、BCBC、CDCD、DADA的中点。的中点。求证:四边形求证:四边形EFGHEFGH是平行四边形是平行四边形。证明:连结证明:连结ACAC AE=EB、CF=FB,(三角形中位线定理三角形中位线定理)21EFAC,EF= AC四边形四边形EFGH是平行四边形是平行四边形同理:同理: HGAC,HG= AC21EF HG,且EF=HG思考: (1) 顺次连结顺次连结平行四边平行四边形形各边中点所得的四边形是各边中点所得的四边形是_?(2)顺次连结)顺次连结矩形矩形各边中点各边中点所得的四边形是所得的四边形是_?(3
6、)顺次连结)顺次连结菱形菱形各边中点各边中点所得的四边形是所得的四边形是_?平行四边形平行四边形菱形矩形矩形变式练习变式练习 (4)顺次连结)顺次连结正方正方形形各边中点所得的四各边中点所得的四边形是边形是_? (5)顺次连结)顺次连结梯形梯形各边各边中点所得的四边形是中点所得的四边形是_?(6)顺次连结)顺次连结等腰梯形等腰梯形各边中点所得的四边形各边中点所得的四边形是是_?正方形正方形平行四边形平行四边形菱形菱形 (7)顺次连结)顺次连结对角线相等对角线相等的四边形各边中点所得的四的四边形各边中点所得的四边形是什么?边形是什么?(9)顺次连结)顺次连结对角线相等且对角线相等且垂直垂直的四边
7、形各边中点所得的四边形各边中点所得的四边形是什么?的四边形是什么? (8)顺次连结顺次连结对角线垂直对角线垂直的四边形各边中点所得的四的四边形各边中点所得的四边形是什么?边形是什么?菱形矩形正方形总结总结不相等且不互相垂直的四边形各边中点不相等且不互相垂直的四边形各边中点组成组成_对对角角线线平行四边形平行四边形互相垂直的四边形各边中点组成互相垂直的四边形各边中点组成_矩形矩形相等的四边形各边中点组成相等的四边形各边中点组成_菱形菱形相等且互相垂直的四边形各边中点相等且互相垂直的四边形各边中点组成组成_正方形正方形3.3.4.4.线段的倍分线段的倍分5.5.的发现过程所用到的发现过程所用到的数学方法(包括画图、实验、猜想、分的数学方法(包括画图、实验、猜想、分析、归纳等析、归纳等.) .)