1、平面向量基本定理平面向量基本定理2.3.12.3.1平面向量的基本定理平面向量的基本定理 设设 、 是同一平面内的两个不共是同一平面内的两个不共1e2e线的向量,线的向量,a 是这一平面内的任一向量,是这一平面内的任一向量,1e2e我们研究我们研究 a 与与 、 之间的关系。之间的关系。1ea2e研究研究OC = OM + ON =OC = OM + ON =21OA + OBOA + OB11e2e2即即 a = + .= + .1ea1eA A2eO OaC CB B2eN NM M M MN N平面向量基本定理 一向量 a 有且只有一对实数 、 使21共线向量,那么对于这一平面内的任 如
2、果 、 是同一平面内的两个不1e2e11ea = + 2e2示这一平面内所有向量的一组基底。我们把不共线的向量 、 叫做表1e2e(1)一组平面向量的基底有多少对?(有无数对)思考E EF F F FA AN NB BaM MO OC CN NM MM MO OC CN NaE E思考 (2)若基底选取不同,则表示同一 向量的实数 、 是否相同? 21(可以不同,也可以相同)O OC CF FM MN NaE E E EA AB BN NOC = 2OB + ON OC = 2OB + ON OC = 2OA + OEOC = 2OA + OEOC = OF + OE OC = OF + OE
3、 特别的,若特别的,若 a = 0 ,则有且只有,则有且只有 : 可使可使 0 =11e2e2+.21= 0?若若 与与 中只中只有一个为零,情有一个为零,情况会是怎样?况会是怎样?21特别的,若特别的,若a与与 ( )共线,则有)共线,则有 =0( =0),使得),使得: a = + .121e22e2e11e已知向量 求做向量-2.5 +3 例3: 、 1e2e1e2e1e2e15 .2e23eOABC1eOABC?MMDMCMBMAbabADaABABCD、表示、,用,且,的两条对角线相交于点如图所示,平行四边形例4D DC CB BA AM M 例 ABCD中,E、F分别是DC和AB的
4、中点,试判断AE,CF是否平行?FBADCEFBADCEE、F分别是DC和AB的中点,AE= AD+ DE = b+ a2121CF= CB+ BF = -b - aAE= - CFAE与CF共线,又无公共点AE,CF平行.解:设AB= a,AD= b. 总结:1、平面向量基本定理内容2、对基本定理的理解(1)实数对1、 的存在性和唯一性()基底的不唯一性()定理的拓展性、平面向量基本定理的应用求作向量、解(证)向量问题、解(证)平面几何问题 例5、 如图,已知梯形ABCD,AB/CD,且AB= 2DC,M,N分别是DC,AB的中点. 请大家动手,在图中确定一组基底,将其他向量用这组基底表示出
5、来。ANMCDB解析:BC = BD + DC = MN = DN-DM 21=(AN-AD)- DC(ADAB)+DCANMCDBDC = AB =21211e设AB = ,AD = ,则有:1e2e41= - .2e1e1e2e1e21= - + = 2141= - - 2e1e1e2e211e- -+ 评析评析 能够在具体问题中适当地选取基底,使其他向量能够用基底来表示,再利用有关知识解决问题。 设 a、b是两个不共线的向量,已知AB = 2a + kb, CB = a + 3b,CD = 2a b,若A、B、D三点共线,求k的值。 A、B、D三点共线解:AB与BD共线,则存在实数使得A
6、B = BD.使得AB = BD.思考思考k = 8 .= a 4b由于BD = CD CB =(2a b) (a +3b)则需 2a + kb = (a 4b ) 由向量相等的条件得2 =k = 4则需 2a + kb = (a 4b ) 2 - = 0k 4 = 0此处可另解:k = 8 .即(2 - )a +(k - 4 )b = 0 本题在解决过程中用到了两向量共线的充要条件这一定理,并借助平面向量的基本定理减少变量,除此之外,还用待定系数法列方程,通过消元解方程组。这些知识和考虑问题的方法都必须切实掌握好。评析评析 2. 在实际问题中的指导意义在于找到表示一个平面所有向量的一组基底(
7、不共线向量 与 ),从而将问题转化为关于 、 的相应运算。1e2e1e2e 1.平面向量基本定理可以联系物理学中的力的分解模型来理解,它说明在同一平面内任一向量都可以表示为不共线向量的线性组合,该定理是平面向量坐标表示的基础,其本质是一个向量在其他两个向量上的分解。课堂总结课堂总结思考思考 在梯形在梯形ABCDABCD中,中,E E、F F分别时分别时ABAB、CDCD的中点,用向量的方法证明:的中点,用向量的方法证明: EF/AD/BC,EF/AD/BC,且且EF = (AD+BC)EF = (AD+BC)21 谢谢同学们谢谢同学们再再见见小时候,我可以在母亲的背上无忧无虑的长大,是母亲编织
8、了女儿的梦,点燃了心中那盏灯,伴我走过人生那坎坷的路程。我想不起病重的母亲是怎样背着我走路,我是怎样在母亲背上长大,可想而知,有病的母亲比健康的人更艰难。是母亲让我学会了人之初,做人做事的道理。当时我不懂母亲的心,她的爱她的温柔,她的关怀和牵挂,不懂事的我在母亲的包容下慢慢地长大,当我知道和读懂母亲的时候,母亲含着眼泪,带着多少担忧与牵挂永远的离开了我。我唯一的靠山倒了,但是母亲教会了我在逆境中学会坚强,勇敢地面对困难和失败,适应任何环境而求生存,这就是我的母亲留给我的无比珍贵的财富和爱。母亲虽然走了,可她永远活在我的心里,我永远怀念她,她是我地唯一,无人取代,也是我的最爱,更是难忘的爱!我想
9、不起小姨妈在母亲有病的时候是怎样抱着我,还是背着我,我不知道,从小姨妈对那段往事的回忆中,我才知道别人对她的冷眼,天寒地冷的无奈我才知道她的棉衣前襟是明亮发光的,而且经常是湿地;才知道烧无烟煤时熏黑了的脸上那双有黑有大的眼睛的明亮。那时候小姨妈只有十六岁,一个失去父母关爱的小女孩,能在姐姐病重的时候撑起一个家,还带着一个不满周岁的孩子,可想而知,这是多么不容易的事,每当小姨妈讲起那段往事,我就想起那苦难无助地童年,小姨妈无私的爱,让我永远难忘。小姨妈的人生很苦,很少有人去关她,可是她却为我们这些没有母爱的孩子现出了她的青春和所有的爱。我母亲去世后小姨妈也经常照顾我,关心我。她不但关爱我,还有我
10、的三姨家兄弟妹们。还在我母亲没有去世时,我的三姨妈由于有病去世了,留下四个孩子,最小的才两岁,她为了照顾这四个孩子,就和我三姨父结婚,把他们养大成人,现在孩子们都有了自己的家,可是小姨妈由于劳累过度,而病倒了,现在病在床上不能自理,当我今年回家看到小姨妈时,我很惭愧,她为我们付出的太多了,可我们又给了她什么,她看到我时那含泪的笑容,我才体会到母爱的无私和伟大,也许她不求我们什么,能常回家看看足矣,可我们却做不到,当我们爱自己的孩子的时候,可曾想过,我们把爱孩子的十分之一去爱母亲,她就足矣,往往这一点也做不到,说句心里话,我们欠母亲的无法补偿,更无法用语言表达。我有这两位母亲,虽然我的人生很不幸
11、,但我有她们给我的无私的爱,我永远是幸福的,她们对我的爱我永存心里。在美国西雅图的一所著名教堂里,有一位德高望重的牧师戴尔泰勒。有一天,他向教会学校一个班的学生们先讲了下面这个故事。那年冬天,猎人带着猎狗去打猎。猎人一枪击中了一只兔子的后腿,受伤的兔子拼命地逃生,猎狗在其后穷追不舍。可是追了一阵子,兔子跑得越来越远了。猎狗知道实在是追不上了,只好悻悻地回到猎人身边。猎人气急败坏地说:“你真没用,连一只受伤的兔子都追不到!”猎狗听了很不服气地辩解道:“我已经尽力而为了呀!”再说兔子带着枪伤成功地逃生回家了,兄弟们都围过来惊讶地问它:“那只猎狗很凶呀,你又带了伤,是怎么甩掉它的呢?”兔子说:“它是
12、尽力而为,我是竭尽全力呀!它没追上我,最多挨一顿骂,而我若不竭尽全力地跑,可就没命了呀!”泰勒牧师讲完故事之后,又向全班郑重其事地承诺:谁要是能背出圣经马太福音中第五章到第七章的全部内容,他就邀请谁去西雅图的“太空针”高塔餐厅参加免费聚餐会。圣经马太福音中第五章到第七章的全部内容有几万字,而且不押韵,要背诵其全文无疑有相当大的难度。尽管参加免费聚餐会是许多学生梦寐以求的事情,但是几乎所有的人都浅尝则止,望而却步了。几天后,班中一个11岁的男孩,胸有成竹地站在泰勒牧师的面前,从头到尾地按要求背诵下来,竟然一字不漏,没出一点差错,而且到了最后,简直成了声情并茂的朗诵。泰勒牧师比别人更清楚,就是在成
13、年的信徒中,能背诵这些篇幅的人也是罕见的,何况是一个孩子。泰勒牧师在赞叹男孩那惊人记忆力的同时,不禁好奇地问:“你为什么能背下这么长的文字呢?”这个男孩不假思索地回答道:“我竭尽全力。”16年后,这个男孩成了世界著名软件公司的老板。他就是比尔盖茨。泰勒牧师讲的故事和比尔盖茨的成功背诵对人很有启示:每个人都有极大的潜能。正如心理学家所指出的,一般人的潜能只开发了28左右,像爱因斯坦那样伟大的大科学家,也只开发了12左右。一个人如果开发了50的潜能,就可以背诵400本教科书,可以学完十几所大学的课程,还可以掌握二十来种不同国家的语言。这就是说,我们还有90的潜能还处于沉睡状态。谁要想出类拔萃、创造奇迹,仅仅做到尽力而为还远远不够,必须竭尽全力才行。