1、, 1,0yxF, 0,lim,yxFyFx, 0,lim,yxFxFy, 0,lim,yxFFyx. 1,lim,yxFFyx 21),(xXxPGYXP ),(),(),(,11211222yxFyxFyxFyxF 0),( yxf1.2.1),( ydxdyxf RxyYyPyYyxXPyYyxXP ,limlim00 .,)()(2)()1(21exp121),(2222212121212221Ryxyxxxyxf 其中其中 11, 0, 0,2121均为常数,均为常数,dyyyzfyzfZ),()(474223),(CCCCjiPjiji351)2, 0(4722220313CCCC
2、Pp 0 1 2 3 jp 0 0 0 353 352 355 1 0 356 3512 352 3520 2 351 356 353 0 3510 ip 351 3512 3518 354 1 解:解: 0) 1, 1() 1, 1(2121PP12 -1 0 1 jp 0 41 0 41 21 1 0 21 0 21 ip 41 21 41 1 2116/1)(8/18/1)(21321jiiipyPxxpxPyyy 43)61/()81(/41)61/()241(12121111 pppppp3121611121)41/()81(/2131122 pppppp41314383214312
3、13141322322223113 ppppppppp 10 10 (第1次取红球)(第1次取白球)(第2次取红球)(第2次取白球)P 因为因为65)0(65)0(3625)0, 0(1111 pPpPPp 65653625)0()0, 0()00( PPP6165365)0()0, 1()01( PPP6561365)1()1, 0()10( PPP6161361)1()1, 1()11( PPP 解:解:.)5 , 4 , 3 , 2 , 1 , 0; 3 , 2 , 1 , 0)(,( jijiPpij 设设 52. 001. 0)865421()975311()5, 1()4, 1()
4、3, 1()2, 1()1, 1(10150514041303120211011000 ppppppppppppppPPPPP )0, 1(), 1()1( PPP3322110030)(pppppPiii 14. 001. 0)6521( 050403020100)(ppppppP 353433252423221514131211pppppppppppp 89. 001. 0)411311(1)(11323121302010315305 ppppppppiijijiijij解:(解:(1) 2 , 1 , 0,0,)1()( nnmppCnXmYPmnmmn(2). 2 , 1 , 0,0
5、,!)1(, nnmneppCnXPnXmYPmYnXPnmnmmn )0, 0( yx(其它)(其它) 120)31(44)(),(1303040300)43(KeKdxeKdxdyeeKdxdyKedxdyxxyxyx (2) )1)(1(02)41(01)31(1212),()20 , 10(834320)43(101020 eeeedyedxdyyxdxPyxyx )1)(1(12),(),(4300)43(yxxyyxxyeedxdyedxdyyxyxF 0)1)(1(),(43yxeeyxF(其它)(其它) )0, 0( yx)1(2 yx(其它)(其它) 08)1(21)(42x
6、xx )11( x(其它)(其它)其它其它)10( y),(,21arctan141)2(arctan212arctan141)arctan(arctan21arctanarctan1),()(22limlim xxxxxyyxyxFxFyy )1)(1(11)2(arctan111)2)(arctan2(arctan1),(222222yxyxyyxxyyx )( ,)1(1)(arctan)1(111)1(1),()(222222 yxyxdyyxdyyxx yyy,)1(1)(2 2033),()(xxdydyyxxx 02)1(32y )10( y(其它)(其它) 03)(2xx )1
7、0( x(其它)(其它)xyx3),( 且且 02)1(3)(2 yy 22122)1(33)(),()(yxyxyyxyx 或或 01)(xxy )0(xy 0( y)xy )10( x 012)(2yxyx )1( xyyx (或)1 x)10( y 求:求: ,的概率分布的概率分布. 利用同一表格法,由利用同一表格法,由),( 的概率分布可列下表的概率分布可列下表 4222111222/111/0133204311022 , 21 , 21, 22 , 11 , 11 , 1,20/120/320/320/620/220/5 ijp 的概率分布的概率分布 的概率分布的概率分布 的概率分布
8、的概率分布 的概率分布的概率分布 ijp 91 91 91 91 91 91 91 91 91 ),( )1 , 1( )2 , 1( )3 , 1( )1 , 2( )2 , 2( )3 , 2( )1 , 3( )2 , 3( )3 , 3( ),max( X 1 2 3 2 2 3 3 3 3 ),min( Y 1 1 1 1 2 2 1 2 3 ),(YX )1 , 1( )1 , 2( )1 , 3( )1 , 2( )2 , 2( )2 , 3( )1 , 3( )2 , 3( )3 , 3( 1 2 3 1 91 92 92 2 0 91 92 3 0 0 91 XY01)(x)
9、 10( x(其他)0)(yey)0(y( (其它其它) ) 1)00()0(zzz ) 10( x(其它)20( y(其它) 1() 10()0(xxx)2()20()0(yyy 1220)()()(2zzzFzFzFX)0(z)10( z)21 ( z)2(z22110zzz 011)(1xxF) 1() 10()0(xxx0211)(1yyF)2()20()0(yyy 1)3(200)21)(1 (11)(1)(1 1)(zzzzzFzFzFY)0( z)0( z)10( z) 10( z) 1( z) 1( z023)(zzY) 10( z(其它) zzrzyxyxzyxZerdred
10、dxdyedxdyyxfzYXPzZPzF022202222222222212121),()( 3413. 0)0()1(160060 YPYP)36, 0(32321NXXXY X 0 1 p 53 52 Y 0 1 0XkYP 32 31 Y 0 1 1XkYP 21 21 5232530000, 0 XYPXPYXP 5121521111, 15121521010, 15131530101, 0 XYPXPYXPxyPXPYXPXYPXPYXP 0 1 0 52 51 1 51 51 XY X 0 1 p 21 21 Z 0 1 p 41 43 V 0 1 p 43 41 U 0 1 p
11、 43 41 DyxDyxDyxDyxSyxfD),( , 0),( ,21),( , 0),( ,1),( 其它 )()(212121)(21)( zzzXzPzXzPdxxfzfzzXZ 2141411, 11, 111 YXPYXPYXPYXPYXP 211, 11, 11 YXPYXPXYP21414111111, 11, 10YPXPYPXPYXPYXPYXP (A)4916(B)75(C)73(D)4940 757374740, 000)0()0(0),max(YXPYPXPYXPYXP (A)e11 (B)e211 (C)e11 (D)e21 其他其他p 经常不断地学习,你就什么都知道。你知道得越多,你就越有力量p Study Constantly, And You Will Know Everything. The More You Know, The More Powerful You Will Be写在最后Thank You在别人的演说中思考,在自己的故事里成长Thinking In Other PeopleS Speeches,Growing Up In Your Own Story讲师:XXXXXX XX年XX月XX日