1、2020-2021学年广东省深圳市枫叶学校八年级(下)期末数学试卷一、选择题(每题3分,共36分)1(3分)下列图形中,是中心对称图形的是()ABCD2(3分)六边形的外角和为()A180B720C360D10803(3分)若等腰三角形的两边长分别为4和6,则它的周长是()A14B15C16D14或164(3分)不等式x2的解集在数轴上表示为()ABCD5(3分)下列命题中,是假命题的是()A对顶角相等B同旁内角互补C全等三角形的对应边相等D角平分线上的点到这个角的两边的距离相等6(3分)下列式子从左到右变形是因式分解的是()Aa2+4a21a(a+4)21Ba2+4a21(a3)(a+7)C
2、(a3)(a+7)a2+4a21Da2+4a21(a+2)2257(3分)如图,在ABCD中,已知AD5cm,AB3cm,AE平分BAD交BC边于点E,则EC等于()A1cmB2cmC3cmD4cm8(3分)如果分式xx+3有意义,那么x的取值范围是()Ax3Bx3Cx0Dx39(3分)若xy,则下列不等式成立的是()Ax1y1Bx+5y+5C2x2yDx2y210(3分)如图,点P是BAC的平分线AD上一点,PEAC于点E已知PE10,则点P到AB的距离是()A15B12C5D1011(3分)若把分式3ab2a+b(a、b均不为0且a+b0)中的a、b都扩大为原来的3倍,则分式的值()A缩小
3、为原来的13B扩大为原来的3倍C扩大为原来的9倍D不变12(3分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AEBC,垂足为E,AB=3,AC2,BD4,则AE的长为()A32B32C217D2217二、填空题(每题3分,共12分)13(3分)分解因式:2n28 14(3分)如图,在ABC中,D、E分别是边AB、AC的中点,BC8,则DE 15(3分)根据图象,不等式kxx+3的解集是 16(3分)如图,在ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F已知AB4,BC6,CE2,则CF的长 三、解答题(本题共8小题,共52分。)17(6分)解
4、不等式(1)2x+110x;(2)2(x4)4+x18(6分)(1)解不等式组2x+1-33x-24(2)解方程xx-3-2=4x-319(6分)先化简,再求值:x2-1x2+2xx-1x,其中x320(6分)某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?21(6分)如图,已知平行四边形ABCD中,ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AFDF求证:ABDE;若AB3,BF5,
5、求BCE的周长22(6分)若关于x的方程mx2-9+2x+3=1x-3有增根,则增根是多少?并求方程产生增根时m的值23(8分)如图,已知点M,N分别是平行四边形ABCD的边AB,DC的中点求证:四边形AMCN为平行四边形24(8分)如图,已知在ABC中,B90,AB8cm,BC6cm,点P开始从点A开始沿ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿ABC的边做逆时针运动,且速度为每秒2cm,它们同时出发,设运动时间为t秒(1)出发2秒后,求PQ的长;(2)在运动过程中,PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线
6、段PQ第一次把直角三角形周长分成相等的两部分?2020-2021学年广东省深圳市枫叶学校八年级(下)期末数学试卷参考答案与试题解析一、选择题(每题3分,共36分)1(3分)下列图形中,是中心对称图形的是()ABCD【解答】解:A不是中心对称图形,不符合题意B不是中心对称图形,不符合题意C不是中心对称图形,不符合题意D是中心对称图形,符合题意故选:D2(3分)六边形的外角和为()A180B720C360D1080【解答】解:因为多边形的外角和等于360,所以六边形的外角和等于360故选:C3(3分)若等腰三角形的两边长分别为4和6,则它的周长是()A14B15C16D14或16【解答】解:根据题
7、意,当腰长为6时,符合三角形三边关系,周长6+6+416;当腰长为4时,符合三角形三边关系,周长4+4+614故选:D4(3分)不等式x2的解集在数轴上表示为()ABCD【解答】解:不等式x2,在数轴上的2处用实心点表示,向右画线故选:C5(3分)下列命题中,是假命题的是()A对顶角相等B同旁内角互补C全等三角形的对应边相等D角平分线上的点到这个角的两边的距离相等【解答】解:A、对顶角相等,本选项说法是真命题,不符合题意;B、两直线平行,同旁内角互补,故本选项说法是假命题,符合题意;C、全等三角形的对应边相等,本选项说法是真命题,不符合题意;D、角平分线上的点到这个角的两边的距离相等,本选项说
8、法是真命题,不符合题意;故选:B6(3分)下列式子从左到右变形是因式分解的是()Aa2+4a21a(a+4)21Ba2+4a21(a3)(a+7)C(a3)(a+7)a2+4a21Da2+4a21(a+2)225【解答】解:A、a2+4a21a(a+4)21,不是因式分解,故A选项错误;B、a2+4a21(a3)(a+7),是因式分解,故B选项正确;C、(a3)(a+7)a2+4a21,不是因式分解,故C选项错误;D、a2+4a21(a+2)225,不是因式分解,故D选项错误;故选:B7(3分)如图,在ABCD中,已知AD5cm,AB3cm,AE平分BAD交BC边于点E,则EC等于()A1cm
9、B2cmC3cmD4cm【解答】解:ADBC,DAEBEA,AE平分BAD,BAEDAE,BAEBEA,BEAB3cm,BCAD5cm,ECBCBE532cm,故选:B8(3分)如果分式xx+3有意义,那么x的取值范围是()Ax3Bx3Cx0Dx3【解答】解:由题意得:x+30,解得:x3,故选:B9(3分)若xy,则下列不等式成立的是()Ax1y1Bx+5y+5C2x2yDx2y2【解答】解:Axy,x1y1,故本选项不符合题意;Bxy,x+5y+5,故本选项符合题意;Cxy,2x2y,故本选项不符合题意;Dxy,x2y2,故本选项不符合题意;故选:B10(3分)如图,点P是BAC的平分线A
10、D上一点,PEAC于点E已知PE10,则点P到AB的距离是()A15B12C5D10【解答】解:过P点作PFAB于F,如图,AD平分BAC,PEAC,PFAB,PFPE10,即点P到AB的距离为10故选:D11(3分)若把分式3ab2a+b(a、b均不为0且a+b0)中的a、b都扩大为原来的3倍,则分式的值()A缩小为原来的13B扩大为原来的3倍C扩大为原来的9倍D不变【解答】解:若把分式3ab2a+b中的a、b都扩大为原来的3倍,则新的分式为33a3b23a+3b=93ab3(2a+b)=33ab2a+b故选:B12(3分)如图,平行四边形ABCD的对角线AC与BD相交于点O,AEBC,垂足
11、为E,AB=3,AC2,BD4,则AE的长为()A32B32C217D2217【解答】解:四边形ABCD为平行四边形,AC2,BD4,OA=12AC1,OB=12BD2,AB=3,AB2+OA2OB2,AOB为直角三角形,且BAO90,BC=AC2+AB2=22+(3)2=7,SABC=12ACAB=12BCAE,23=7AE,解得AE=2217故选:D二、填空题(每题3分,共12分)13(3分)分解因式:2n282(n+2)(n2)【解答】解:原式2(n24)2(n+2)(n2)故答案为:2(n+2)(n2)14(3分)如图,在ABC中,D、E分别是边AB、AC的中点,BC8,则DE4【解答
12、】解:D、E分别是边AB、AC的中点,BC8,DE=12BC4故答案为:415(3分)根据图象,不等式kxx+3的解集是 x1【解答】解:根据图象可知:两函数的交点为(1,2),所以关于x的一元一次不等式kxx+3的解集为x1,故答案为:x116(3分)如图,在ABCD中,对角线AC与BD相交于点O,在DC的延长线上取一点E,连接OE交BC于点F已知AB4,BC6,CE2,则CF的长1.5【解答】解:过点O作OMBC,交CD于M,如图:四边形ABCD为平行四边形,CDAB,ODOB,OM为BCD的中位线,又AB4,BC6,CM=12CD=12AB2,OM=12BC3,OMBC,CFEMOE,C
13、FOM=CEME,CE2,CM2,ME4,CF3=24,CF1.5故答案为:1.5三、解答题(本题共8小题,共52分。)17(6分)解不等式(1)2x+110x;(2)2(x4)4+x【解答】解:(1)移项得:2x+x101,合并同类项得:3x9,系数化成1得:x3;(2)去括号得:2x84+x,移项得:2xx4+8,合并同类项得:x1218(6分)(1)解不等式组2x+1-33x-24(2)解方程xx-3-2=4x-3【解答】解:(1)解不等式2x+13,得2x4,x2,解不等式3x24,得3x6,x2,不等式组的解集为2x2;(2)方程两边同时乘以x3,得x2(x3)4,即x+64,解得x
14、2,该方程的解为x219(6分)先化简,再求值:x2-1x2+2xx-1x,其中x3【解答】解:原式=(x+1)(x-1)x(x+2)xx-1=x+1x+2;当x3时,原式=3+13+2=4520(6分)某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?【解答】解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:10000x+2=24000x,解得x8经检验x8是方程
15、的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:40008(y8)+240008(y10)4000,解得y12答:售价至少为12元21(6分)如图,已知平行四边形ABCD中,ABC的平分线与边CD的延长线交于点E,与AD交于点F,且AFDF求证:ABDE;若AB3,BF5,求BCE的周长【解答】解:四边形ABCD是平行四边形,ABCD,ABCD,AFDE,ABFE,AFDF,ABFDEF,ABDE;BE平分ABC,ABFCBF,ADBC,CBFAFB,ABFAFB,AFAB3,AD2AF6四边形ABCD是平行四边形,BCAD6,CDAB3,ABFDEF,DEAB3,EFBF
16、5,CE6,BEEF+BF10,BCE的周长BC+CE+BE10+6+62222(6分)若关于x的方程mx2-9+2x+3=1x-3有增根,则增根是多少?并求方程产生增根时m的值【解答】解:去分母,得:m+2(x3)x+3,由分式方程有增根,得到x30或x+30,即x3,把x3代入整式方程,可得:m6,把x3代入整式方程,可得:m12,综上,可得:方程的增根是x3,方程产生增根时m6或1223(8分)如图,已知点M,N分别是平行四边形ABCD的边AB,DC的中点求证:四边形AMCN为平行四边形【解答】证明:四边形ABCD为平行四边形ABCD,ABCD,点M、N分别是平行四边形ABCD的边AB、
17、DC的中点,AM=12AB,CN=12CDAMCN,AMCN,四边形AMCN为平行四边形24(8分)如图,已知在ABC中,B90,AB8cm,BC6cm,点P开始从点A开始沿ABC的边做逆时针运动,且速度为每秒1cm,点Q从点B开始沿ABC的边做逆时针运动,且速度为每秒2cm,它们同时出发,设运动时间为t秒(1)出发2秒后,求PQ的长;(2)在运动过程中,PQB能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由;(3)从出发几秒后,线段PQ第一次把直角三角形周长分成相等的两部分?【解答】解:(1)出发2秒,AP2cm8cm,BQ4cm6cm,即此时P在AB上,Q在B
18、C上,BP826(cm),BQ224(cm),在RtPQB中,由勾股定理得:PQ=PB2+BP2=62+42=213(cm)即出发2秒后,求PQ的长为213cm(2)在运动过程中,PQB能形成等腰三角形,APt,BPABAP8t;BQ2t由PBBQ得:8t2t解得t=83(秒),即出发83秒后第一次形成等腰三角形(3)RtABC中由勾股定理得:AC=AB2+BC2=82+62=10(cm);当0t3时,P在AB上,Q在BC上,APt,BPABAP8t,BQ2t,QC62t,又线段PQ第一次把直角三角形周长分成相等的两部分,由周长相等得:AC+AP+QCPB+BQ10+t+(62t)8t+2t解得:t4(s),此时不符合;当3t8时,P在AB上,Q在AC上,t+10+62t2t+8t,解得:t4,即从出发4秒后,线段PQ第一次把直角三角形周长分成相等的两部分第15页(共15页)