1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年北京市石景山区中考数学模拟考试 A卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若数a使关于x的方程的解为非负数,使关于y的不等式组无解,则所
2、有满足条件的整数a的值之和为( )A7B12C14D182、下列命题中,是真命题的是()A一条线段上只有一个黄金分割点B各角分别相等,各边成比例的两个多边形相似C两条直线被一组平行线所截,所得的线段成比例D若2x3y,则3、下列方程中,属于二元一次方程的是()Axy31B4x2y3Cx+4Dx24y14、若关于x的不等式组无解,则m的取值范围是( )ABCD5、下列命题正确的是A零的倒数是零B乘积是1的两数互为倒数C如果一个数是,那么它的倒数是D任何不等于0的数的倒数都大于零6、二次函数()的图象如图,给出下列四个结论:;对于任意不等于-1的m的值一定成立其中结论正确的个数是( )A1B2C3
3、D47、二次函数 yax2+bx+c(a0)的大致图象如图所示,顶点坐标为(2,9a),下列结论:4a+2b+c0;5ab+c0;若关于 x 的方程ax2+bx+c1 有两个根,则这两个根的和为4;若关于 x 的方程 a(x+5)(x1)=1 有两个根 x1和 x2,且 x1x2,则5x1x21其中正确的结论有( ) 线 封 密 内 号学级年名姓 线 封 密 外 A1 个B2 个C3 个D4 个8、点P(4,3)关于原点对称的点的坐标是( )A(3,4)B(4,3)C(4,3)D(4,3)9、已知有理数在数轴上的位置如图所示,且,则代数式的值为( )AB0CD10、下列运动中,属于旋转运动的是
4、( )A小明向北走了 4 米B一物体从高空坠下C电梯从 1 楼到 12 楼D小明在荡秋千第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知二次函数y1x2+bx+c和反比例函数y2在同一个坐标系中的图象如图所示,则不等式x2+bx+c的解集是 _2、如图,ADBC,E是线段AD上任意一点,BE与AC相交于点O,若ABC的面积是5,EOC的面积是2,则BOC的面积是 _3、桌子上放有6枚正面朝上的硬币,每次翻转其中的4枚,至少翻转_次能使所有硬币都反面朝上4、如图,在半径为5的O中,弦AB6,OCAB于点D,交O于点C,则CD_5、某班学生分组参加活动,原来每组8人,后
5、来重新编组,每组6人,这样比原来增加了两组,这个班共有多少名学生?若设共有x名学生,可列方程为_三、解答题(5小题,每小题10分,共计50分)1、如图,在中,对角线的垂直平分线分别交,于点,与相交于点,连接,(1)求证:四边形是菱形;(2)已知,请你写出的值 线 封 密 内 号学级年名姓 线 封 密 外 2、如图,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两
6、条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度3、如图,为的直径,弦于点,连接于点,且(1)求的长;(2)当时,求的长和阴影部分的面积(结果保留根号和)4、已知:如图,RtABC中,C90,CACB,D是边CB上一点,DEAB于点E,且CDBE求证:AD平分BAC5、利用幂的运算性质计算:(结果用幂的形式表示)-参考答案-一、单选题1、C【分析】第一步:先用a的代数式表示分式方程的解再根据方程的解为非负数,x-30,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进行综合考虑确定最后m的取值范围,最后根据
7、a为整数确定最后结果【详解】解:,2a-8=x-3,x=2a-5,方程的解为非负数,x-30,解得a且a4, 线 封 密 内 号学级年名姓 线 封 密 外 解不等式组得:,不等式组无解,5-2a-7,解得a6,a的取值范围:a6且a4,满足条件的整数a的值为3、5、6,3+5+6=14,故选:C【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键2、B【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判
8、断;根据比例的性质对D选项进行判断【详解】解:A一条线段上有两个黄金分割点,所以A选项不符合题意;B各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D若2x=3y,则,所以D选项不符合题意故选:B【点睛】本题考查了命题:命题的“真”“假”是就命题的内容而言任何一个命题非真即假要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可3、B【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程【详解】解:A、xy-3=1,是二元二次方程,故本选项不合题意;B
9、、4x-2y=3,属于二元一次方程,故本选项符合题意;C、x+4,是分式方程,故本选项不合题意;D、x2-4y=1,是二元二次方程,故本选项不合题意;故选:B【点睛】此题主要考查了二元一次方程的定义,关键是掌握二元一次方程需满足三个条件:首先是整式方程方程中共含有两个未知数所有未知项的次数都是一次不符合上述任何一个条件的都不叫二元一次方程4、D【分析】解两个不等式,再根据“大大小小找不着”可得m的取值范围【详解】解:解不等式得:,解不等式得:,不等式组无解, 线 封 密 内 号学级年名姓 线 封 密 外 ,解得:,故选:D【点睛】此题主要考查了解不等式组,根据求不等式的无解,遵循“大大小小解不
10、了”原则是解题关键5、B【分析】根据倒数的概念、有理数的大小比较法则判断【详解】解:、零没有倒数,本选项说法错误;、乘积是1的两数互为倒数,本选项说法正确;、如果,则没有倒数,本选项说法错误;、的倒数是,则任何不等于0的数的倒数都大于零说法错误;故选:【点睛】本题考查了有理数的乘法及倒数的概念,熟练掌握倒数概念是关键6、C【分析】由抛物线与x轴有两个交点得到b24ac0,可判断;根据对称轴是x1,可得x2、0时,y的值相等,所以4a2b+c0,可判断;根据1,得出b2a,再根据a+b+c0,可得b+b+c0,所以3b+2c0,可判断;x1时该二次函数取得最大值,据此可判断【详解】解:图象与x轴
11、有两个交点,方程ax2+bx+c0有两个不相等的实数根,b24ac0,4acb20,正确;1,b2a,a+b+c0,b+b+c0,3b+2c0,正确;当x2时,y0,4a2b+c0,4a+c2b,错误;由图象可知x1时该二次函数取得最大值,ab+cam2+bm+c(m1)m(am+b)ab故正确正确的有三个,故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查二次函数图象与系数的关系,看懂图象,利用数形结合解题是关键7、C【分析】求解的数量关系;将代入式中求解判断正误;将代入,合并同类项判断正负即可;中方程的根关于对称轴对称,求解判断正误;中求出二次函数与轴的交点坐标,然后
12、观察方程的解的取值即可判断正误【详解】解:由顶点坐标知解得当时,故正确,符合题意;,故错误,不符合题意;方程的根为的图象与直线的交点的横坐标,即关于直线对称,故有,即,故正确,符合题意;,与轴的交点坐标为,方程的根为二次函数图象与直线的交点的横坐标,故可知,故正确,符合题意;故选C【点睛】本题考查了二次函数的图象与性质,二次函数与二次方程等知识解题的关键与难点在于从图象中提取信息,并且熟练掌握二次函数与二次方程的关系8、B【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,进而得出答案【详解】解:点P(4,-3)关于原点对称的点的坐标是(-4,3),故选:B【点睛】此题主要考查了关于原点
13、对称点的性质,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数9、C【分析】首先根据数轴的信息判断出有理数的大小关系,然后确定各绝对值中代数式的符号,即可根据绝对值的性质化简求解【详解】解:由图可知:,故选:C【点睛】本题考查数轴与有理数,以及化简绝对值,整式的加减运算等,理解数轴上表示的有理数的性质,掌 线 封 密 内 号学级年名姓 线 封 密 外 握化简绝对值的方法以及整式的加减运算法则是解题关键10、D【分析】旋转定义:物体围绕一个点或一个轴作圆周运动,根据旋转定义对各选项进行一一分析即可【详解】解:A. 小明向北走了 4 米,是平移,不属于旋转运动,
14、故选项A不合题意; B. 一物体从高空坠下,是平移,不属于旋转运动,故选项B不合题意; C. 电梯从 1 楼到 12 楼,是平移,不属于旋转运动,故选项C不合题意; D. 小明在荡秋千,是旋转运动,故选项D符合题意故选D【点睛】本题考查图形旋转运动,掌握旋转定义与特征,旋转中心,旋转方向,旋转角度是解题关键二、填空题1、或【分析】根据,即是二次函数图象在反比例函数下方,再结合图象可直接求出其解集【详解】根据题意要使,即二次函数图象在反比例函数下方即可根据图象可知当或时二次函数图象在反比例函数下方,的解集是或故答案为:或【点睛】本题考查反比例函数和二次函数综合,掌握函数图像的交点坐标与不等式的关
15、系,是解题的关键2、3【分析】根据平行可得:与高相等,即两个三角形的面积相等,根据图中三角形之间的关系即可得【详解】解:,与高相等,又,故答案为:3【点睛】题目主要考查平行线间的距离相等,三角形面积的计算等,理解题意,掌握平行线之间的距离相等是解题关键3、3【分析】用“”表示正面朝上,用“”表示正面朝下,找出最少翻转次数能使杯口全部朝下的情况即可得答案【详解】用“”表示正面朝上,用“”表示正面朝下, 线 封 密 内 号学级年名姓 线 封 密 外 开始时第一次第二次第三次至少翻转3次能使所有硬币都反面朝上故答案为:3【点睛】本题考查了正负数的应用,根据朝上和朝下的两种状态对应正负号,尝试最少的次
16、数满足题意是解题的关键4、【分析】连接OA,先利用垂径定理得出AD的长,再由勾股定理得出OD的长即可解答【详解】解:连接OA, AB=6,OCAB于点D, AD=AB=6=3, O的半径为5, , CD=OC-OD=5-4=1 故答案为:1【点睛】本题考查的是垂径定理及勾股定理,解答此题的关键是作出辅助线构造出直角三角形,再利用勾股定理求解5、【分析】设这个班学生共有人,先表示出原来和后来各多少组,其等量关系为后来的比原来的增加了组,根据此列方程即可【详解】解:设这个班学生共有人,根据题意得: 故答案为:【点睛】此题考查了由实际问题抽象出一元一次方程,其关键是找出等量关系及表示原来和后来各多少
17、组三、解答题1、(1)见解析;(2)【分析】(1)方法一:先证明,可得,再证明四边形是平行四边形,结合,从而可得结论;方法二:先证明,可得,再证明四边形是平行四边形,结合,从而可得结论;方法三:证明从而可得结论;(2)如图,过作于 利用菱形的性质结合三角函数先求解菱形的对角线的长及菱形的 线 封 密 内 号学级年名姓 线 封 密 外 面积,再利用 求解 从而可得答案.【详解】(1)方法一:四边形是平行四边形,又垂直平分,四边形是平行四边形四边形是菱形方法二:四边形是平行四边形,又垂直平分,四边形是平行四边形,四边形是菱形方法三:垂直平分,四边形是平行四边形,四边形是菱形(2)如图,过作于 四边
18、形是菱形 则 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查的是平行四边形的性质,菱形的判定,菱形的性质,锐角三角函数的应用,掌握“选择合适的判定方法判断菱形及利用等面积法求解菱形的高”是解本题的关键.2、(1)30m(2)1m【分析】(1)设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即
19、可得出结论【小题1】解:设原正方形空地的边长为x m,则剩余部分长(x-4)m,宽(x-5)m,依题意得:(x-4)(x-5)=650,整理得:x2-9x-630=0,解得:x1=30,x2=-21(不合题意,舍去)答:原正方形空地的边长为30m【小题2】设小道的宽度为y m,则栽种鲜花的区域可合成长(30-y)m,宽(30-1-y)m的矩形,依题意得:(30-y)(30-1-y)=812,整理得:y2-59y+58=0,解得:y1=1,y2=58(不合题意,舍去)答:小道的宽度为1m【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键3、(1)2;(2)的长为
20、,阴影部分的面积为【分析】(1)根据垂径定理可得、,从而得到为的中位线,即可求解;(2)连接,求得,利用含直角三角形的性质求得半径,即可求解【详解】解:(1),为的中位线,;(2)连接,如下图: 线 封 密 内 号学级年名姓 线 封 密 外 ,在中,的长,阴影部分的面积【点睛】此题考查了圆的垂径定理,弦、弧、圆心角之间的关键,三角形中位线的性质,等腰三角形的性质,含直角三角形的性质,弧长以及扇形面积的计算,解题的关键是掌握并灵活运用相关性质求解4、见解析【分析】先证明为等腰直角三角形,得出,再证明,得出,即可证明【详解】解:,为等腰直角三角形,又,为等腰直角三角形,平分【点睛】本题考查了等腰直角三角形、三角形全等的判定及性质、角平分线,解题的关键是掌握三角形的全等的证明5、【分析】直接利用分指数幂的以及同底数幂的乘法和同底数幂的除法运算法则分别化简得出答案【详解】解:, 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】题目主要考查分数指数幂的运算及同底数幂的乘法和同底数幂的除法,熟练掌握各运算法则是解题关键