1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年中考数学模拟专项测试 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,由A到B有、三条路线,最短的路线选的理由是( )A两点确定一条
2、直线B经过一点有无数条直线C两点之间,线段最短D一条线段等于已知线段2、若一个多边形截去一个角后变成了六边形,则原来多边形的边数可能是( )A5或6B6或7C5或6或7D6或7或83、二次函数y(x2)25的对称轴是( )A直线xB直线x5C直线x2D直线x24、甲、乙两地相距s千来,汽车从甲地匀速行驶到乙地,行驶的时间t(小时)关于行驶速度v(千米时)的函数图像是( )ABCD5、如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,E=108则BAE的度数为()A120B108C132D726、将,2,3按如图的方式排列,规定表示第m排左起第n个数,则与表示的两个数之积是(
3、 )AB4CD67、若数a使关于x的方程的解为非负数,使关于y的不等式组无解,则所有满足条件的整数a的值之和为( )A7B12C14D188、截至2021年12月31日,我国已有11.5亿人完成了新冠疫苗全程接种,数据11.5亿用科学记数 线 封 密 内 号学级年名姓 线 封 密 外 法表示为( )A11.5108B1.15108C11.5109D1.151099、下列方程是一元二次方程的是( )Ax23xy3Bx23Cx22xDx2310、若,则的值是( )AB0C1D2022第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知点 P (m + 2, 3)和点 Q (
4、2, n - 4)关于原点对称,则 m + n =_2、如图,在中,以为直角边作等腰直角,再以为直角边作等腰直角,按照此规律作图,则的长度为_,的长度为_3、如图,已知正方形ABCD的边长为5,点E,F分别是AB,BC边上的点,且EDF45,将ADE绕点D逆时针旋转90得到CDM若AE2,则MF的长为_4、如图,将一块三角板的直角顶点放在直尺的一边上,若134,则2_5、已知二次函数y1x2+bx+c和反比例函数y2在同一个坐标系中的图象如图所示,则不等式x2+bx+c的解集是 _三、解答题(5小题,每小题10分,共计50分)1、已知关于x的方程x2+k0有实数根,求k的取值范围2、如图1,点
5、A、O、B依次在直线MN上,如图2,现将射线OA绕点O沿顺时针方向以每秒4的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6的速度旋转,当其中一条射线回到起始位置时,运动停止,直线MN保持不动,设旋转时间为ts(1)当t3时,AOB ; 线 封 密 内 号学级年名姓 线 封 密 外 (2)在运动过程中,当射线OB与射线OA垂直时,求t的值;(3)在旋转过程中,是否存在这样的t,使得射线OB、射线OA和射线OM,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分?如果存在,直接写出答案;如果不存在,请说明理由3、如图,一次函数与反比例函数(k0)交于点A、B两点,且点A的坐标为(1
6、,3),一次函数与轴交于点C,连接OA、OB(1)求一次函数和反比例函数的表达式;(2)求点B的坐标及的面积;(3)过点A作轴的垂线,垂足为点D点M是反比例函数第一象限内图像上的一个动点,过点M作轴的垂线交轴于点N,连接CM当与RtCNM相似时求M点的坐标4、规定:A,B,C是数轴上的三个点,当CA=3CB时我们称C为A,B的“三倍距点”,当CB=3CA时,我们称C为B,A的“三倍距点”点A所表示的数为a,点B所表示的数为b且a,b满足(a+3)2+|b5|=0(1) a=_,b=_;(2)若点C在线段AB上,且为A,B的“三倍距点”,则点C所表示的数为_;(3)点M从点A出发,同时点N从点B
7、出发,沿数轴分别以每秒3个单位长度和每秒1个单位长度的速度向右运动,设运动时间为t秒当点B为M,N两点的“三倍距点”时,求t的值5、阅读材料:利用公式法,可以将一些形如的多项式变形为的形式,我们把这样的变形方法叫做多项式的配方法,运用多项式的配方法及平方差公式能对一些多项式进行因式分解例如根据以上材料,解答下列问题(1)分解因式:;(2)求多项式的最小值;(3)已知a,b,c是的三边长,且满足,求的周长-参考答案-一、单选题1、C【分析】根据线段的性质进行解答即可【详解】解:最短的路线选的理由是两点之间,线段最短,故选:C 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题主要考查了线
8、段的性质,解题的关键是掌握两点之间,线段最短2、C【分析】实际画图,动手操作一下,可知六边形可以是五边形、六边形、七边形截去一个角后得到【详解】解:如图,原来多边形的边数可能是5,6,7故选C【点睛】本题考查的是截去一个多边形的一个角,解此类问题的关键是要从多方面考虑,注意不能漏掉其中的任何一种情况3、D【分析】直接根据二次函数的顶点式进行解答即可【详解】解:由二次函数y=(x+2)2+5可知,其图象的对称轴是直线x=-2故选:D【点睛】本题考查的是二次函数的性质,熟知二次函数的顶点式是解答此题的关键4、B【分析】直接根据题意得出函数关系式,进而得出函数图象【详解】解:由题意可得:t=,是反比
9、例函数,故只有选项B符合题意故选:B【点睛】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键5、C【分析】根据等边三角形的性质可得,然后利用SSS即可证出,从而可得,然后求出,即可求出的度数【详解】解:是等边三角形,在与中 线 封 密 内 号学级年名姓 线 封 密 外 ,故选C【点睛】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用SSS判定两个三角形全等和全等三角形的对应角相等是解决此题的关键6、A【分析】根据数的排列方法可知,第一排1个数,第二排2个数,第三排3个数,第四排4个数,第(m-1)排有(m-1)个数,从第一排到(m-1)排共有:1+2
10、+3+4+(m-1)个数,根据数的排列方法,每四个数一个循环,根据题目意思找出第m排第m个数后再计算【详解】解:(5,4)表示第5排从左向右第4个数,由图可知,(5,4)所表示的数是2;是第21排第7个数,则前20排有个数,则是第个数,2,3四个数循环出现,表示的数是与表示的两个数之积是故选A【点睛】本题考查了数字的变化规律,判断出所求的数是第几个数是解决本题的难点;得到相应的变化规律是解决本题的关键7、C【分析】第一步:先用a的代数式表示分式方程的解再根据方程的解为非负数,x-30,列不等式组,解出解集,第二步解出不等式组的解集,根据不等式组无解,列不等式求出解集,根据这两步中m的取值范围进
11、行综合考虑确定最后m的取值范围,最后根据a为整数确定最后结果【详解】解:,2a-8=x-3,x=2a-5,方程的解为非负数,x-30,解得a且a4,解不等式组得:,不等式组无解,5-2a-7, 线 封 密 内 号学级年名姓 线 封 密 外 解得a6,a的取值范围:a6且a4,满足条件的整数a的值为3、5、6,3+5+6=14,故选:C【点睛】本题考查分式方程的解、解一元一次不等式组、解一元一次不等式,掌握用含a的式子表示方程的解,根据方程的解为非负数,根据不等式组无解,两个条件结合求出m的取值范围是解题关键8、D【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值
12、时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正数;当原数的绝对值1时,n是负数【详解】解:11.5亿11500000001.5109故选:D【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值9、D【分析】根据一元二次方程的定义逐个判断即可只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程【详解】解:A是二元二次方程,不是一元二次方程,故本选项不符合题意;B是分式方程,故本选项不符合题意;C不是方程,故本选项不符合题意;D是一元二次方程,
13、故本选项符合题意;故选:D【点睛】本题考查了一元二次方程的定义,能熟记一元二次方程的定义是解此题的关键10、C【分析】先根据非负数的性质求出a和b的值,然后代入所给代数式计算即可【详解】解:,a-2=0,b+1=0,a=2,b=-1,=,故选C【点睛】本题考查了非负数的性质,以及求代数式的值,根据非负数的性质求出a和b的值是解答本题的关键二、填空题1、-3【分析】 线 封 密 内 号学级年名姓 线 封 密 外 求解的值,然后代入求解即可【详解】解:由题意知解得故答案为:【点睛】本题考查了关于原点对称的点坐标的特征解题的关键在于明确关于原点对称的点坐标的横、纵坐标均互为相反数2、 【分析】根据等
14、腰直角三角形斜边等于直角边的倍分别求解即可【详解】解:, 同理可得, 故答案为:,【点睛】本题考查了等腰直角三角形的性质,熟记等腰直角三角形斜边等于直角边的倍是解题的关键3、#【分析】由旋转可得DE=DM,EDM为直角,可得出EDF+MDF=90,由EDF=45,得到MDF为45,可得出EDF=MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;则可得到AE=CM=2,正方形的边长为5,用ABAE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BMFM=BMEF=7x,在直角三角形BEF中,利用勾股定理列出关
15、于x的方程,求出方程的解得到x的值,即为MF的长【详解】解:ADE逆时针旋转90得到CDM,A=DCM=90,DE=DM,FCM=FCD+DCM=180,F、C、M三点共线,EDM=EDC+CDM=EDC+ADE=90,EDF+FDM=90,EDF=45,FDM=EDF=45,在DEF和DMF中,DEFDMF(SAS), 线 封 密 内 号学级年名姓 线 封 密 外 EF=MF,设EF=MF=x,AE=CM=2,且BC=5,BM=BC+CM=5+2=7,BF=BMMF=BMEF=7x,EB=ABAE=52=3,在RtEBF中,由勾股定理得EB2+BF2=EF2,即32+(7x)2=x2,解得:
16、,MF=故答案为:【点睛】此题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,以及勾股定理此题难度适中,注意掌握旋转前后图形的对应关系,注意掌握数形结合思想与方程思想的应用4、56【分析】先根据余角的定义求出3的度数,再由平行线的性质即可得出结论【详解】解:134,3903456直尺的两边互相平行,2356故答案为:56【点睛】本题考查平行线的性质、直角三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型5、或【分析】根据,即是二次函数图象在反比例函数下方,再结合图象可直接求出其解集【详解】根据题意要使,即二次函数图象在反比例函数下方即可根据图象可知当或时二次函数
17、图象在反比例函数下方,的解集是或故答案为:或【点睛】本题考查反比例函数和二次函数综合,掌握函数图像的交点坐标与不等式的关系,是解题的关键三、解答题1、【分析】根据根的判别式的意义得到,还有被开方式,然后解不等式组即可 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:根据题意得且,解得:【点睛】本题考查了根的判别式:一元二次方程的根与有如下关系:当时,方程有两个不相等的两个实数根;当时,方程有两个相等的两个实数根;当时,方程无实数根,本题关键还应考虑被开方式非负2、(1)150(2)9或27或45;(3)t为、【分析】(1)求出AOM及BON的度数可得答案;(2)分两种情况:当时,当时
18、,根据OA与OB重合前,OA与OB重合后,列方程求解; (3)射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分有以下九种情况:OA分BOM为2:3时,OA分BOM为3:2时,OB分AOM为2:3时,OB分AOM为3:2时,OM分AOB为2:3时, OB分AOM为2:3时,OB分AOM为3:2时, OA分BOM为3:2时, OA分BOM为2:3时,列方程求解并讨论是否符合题意(1)解:当t3时,AOM=12,BON=18,AOB180-AOM-BON=150,故答案为:150;(2)解:分两种情况:当时,当OA与OB重合前,得t=9; 当OA与OB
19、重合后,得t=27;当时,当OA与OB重合前,得t=45; 当OA与OB重合后,得t=63(舍去);故t的值为9或27或45;(3)解:射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分有以下九种情况:OA分BOM为2:3时,4t:(180-4t-6t)=2:3,解得:t=;OA分BOM为3:2时, 线 封 密 内 号学级年名姓 线 封 密 外 4t:(180-4t-6t)=3:2,解得:t=;OB分AOM为2:3时,得t=;OB分AOM为3:2时,得t=;OM分AOB为2:3时,得t=54,此时180,故舍去; OB分AOM为2:3时,得,此时,
20、故舍去;OB分AOM为3:2时,得, 此时,故舍去; 线 封 密 内 号学级年名姓 线 封 密 外 OA分BOM为3:2时,得, OA分BOM为2:3时,得t=67.5(舍去)综上,当t的值分别为、时,射线OB、射线OM、射线OA中,其中一条射线把另外两条射线的夹角(小于180)分成2:3的两部分【点睛】此题考查了角的计算,角的旋转,几何图形中角度的度数比,列一元一次方程,正确画出图形求角度值是解题的关键3、(1)一次函数表达式为,反比例函数表达式为;(2),;(3)或【分析】(1)把分别代入一次函数与反比例函数,解出,即可得出答案;(2)把一次函数和反比例函数联立求解即可求出点B坐标,令代入
21、一次函数解出点C坐标,由即可;(3)根据相似三角形的判定:两边成比例且夹角相等的两个三角形相似,找出对应边成比例求解即可【详解】(1)把代入一次函数得:,解得:,一次函数表达式为,把代入反比例函数得:,即,反比例函数表达式为;(2),解得:或,令代入得:,;(3) 线 封 密 内 号学级年名姓 线 封 密 外 当时,即,解得:,M在第一象限,当时,即,解得:,M在第一象限,综上,当与相似时,M点的坐标为或【点睛】本题考查反比例函数综合以及相似三角形的判定与性质,掌握相关知识点的应用是解题的关键4、(1)-3,5(2)3 线 封 密 内 号学级年名姓 线 封 密 外 (3)当t为或t=3或秒时,
22、点B为M,N两点的“三倍距点”【分析】(1)根据非负数的性质,即可求得a,b的值;(2)根据“三倍距点”的定义即可求解;(3)分点B为M,N的“三倍距点”和点B为N,M的“三倍距点”两种情况讨论即可求解(1)解:(a+3)2+|b5|=0,a+3=0,b5=0,a=-3,b=5,故答案为:-3,5;(2)解:点A所表示的数为-3,点B所表示的数为5,AB=5-(-3)=8,点C为A,B的“三倍距点”,点C在线段AB上,CA=3CB,且CA+CB=AB=8,CB=2,点C所表示的数为5-2=3,故答案为:3;(3)解:根据题意知:点M所表示的数为3t-3,点N所表示的数为t+5,BM=,BN=,
23、(t0),当点B为M,N的“三倍距点”时,即BM=3BN,或,解得:,而方程,无解;当点B为N,M的“三倍距点” 时,即3BM=BN,或,解得:或t=3;综上,当t为或t=3或秒时,点B为M,N两点的“三倍距点”【点睛】本题考查了非负数的性质,一元一次方程的应用、数轴以及绝对值,熟练掌握“三倍距点”的定义是解题的关键5、(1)(2)(3)12【分析】(1)先配完全平方,然后利用平方差公式即可(2)先配方,然后根据求最值即可 线 封 密 内 号学级年名姓 线 封 密 外 (3)对移项、配方,根据平方大于等于0,确定每一项均为0,求解边长,进而得出周长(1)解:(2)解:多项式的最小值为(3)解:即,的周长【点睛】本题考查了完全平方公式与平方差公式分解因式,代数式的最值,平方等知识解题的关键在于正确的配方