1、从化区外国语学校2019-2020学年高二上学期第二次月考试卷数学卷从化区外国语学校2019-2020学年高二上学期第二次月考试卷数学班级_ 姓名_ 分数_一、选择题1 在数列an中,a1=3,an+1an+2=2an+1+2an(nN+),则该数列的前2015项的和是( )A7049B7052C14098D141012 已知点A(0,1),B(3,2),向量=(4,3),则向量=( )A(7,4)B(7,4)C(1,4)D(1,4)3 设集合是三角形的三边长,则所表示的平面区域是( ) A B C D4 已知直线x+ay1=0是圆C:x2+y24x2y+1=0的对称轴,过点A(4,a)作圆C
2、的一条切线,切点为B,则|AB|=( )A2B6C4D25 在曲线y=x2上切线倾斜角为的点是( )A(0,0)B(2,4)C(,)D(,)6 数列中,对所有的,都有,则等于( )A B C D7 函数y=a1x(a0,a1)的图象恒过定点A,若点A在直线mx+ny1=0(mn0)上,则的最小值为( )A3B4C5D68 记,那么ABCD9 已知定义在R上的函数f(x)满足f(x)=,且f(x)=f(x+2),g(x)=,则方程g(x)=f(x)g(x)在区间3,7上的所有零点之和为( )A12B11C10D910如果向量满足,且,则的夹角大小为( )A30B45C75D13511函数,的值域
3、为( ) A. B. C. D.12若复数z满足=i,其中i为虚数单位,则z=( )A1iB1+iC1iD1+i二、填空题13设抛物线的焦点为,两点在抛物线上,且,三点共线,过的中点作轴的垂线与抛物线在第一象限内交于点,若,则点的横坐标为 .14设函数f(x)=,则f(f(2)的值为15已知是第四象限角,且sin(+)=,则tan()=16已知的面积为,三内角,的对边分别为,若,则取最大值时 17设函数,其中x表示不超过x的最大整数若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是18已知点A(1,1),B(1,2),C(2,1),D(3,4),求向量在方向上的投影三、解答题19在A
4、BC中,cos2A3cos(B+C)1=0(1)求角A的大小;(2)若ABC的外接圆半径为1,试求该三角形面积的最大值20已知集合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0(1)求AB(2)若AC=C,求实数m的取值范围21(本小题满分12分)已知圆与圆:关于直线对称,且点在圆上.(1)判断圆与圆的位置关系; (2)设为圆上任意一点,三点不共线,为的平分线,且交于. 求证:与的面积之比为定值.22解不等式|3x1|x+223在平面直角坐标系xOy中,点P(x,y)满足=3,其中=(2x+3,y),=(2x3,3y)(1)求点P的轨迹方程;(2)过点F
5、(0,1)的直线l交点P的轨迹于A,B两点,若|AB|=,求直线l的方程24(本小题满分12分)已知且过点的直线与线段有公共点, 求直线的斜率的取值范围.从化区外国语学校2019-2020学年高二上学期第二次月考试卷数学(参考答案)一、选择题1 【答案】B【解析】解:an+1an+2=2an+1+2an(nN+),(an+12)(an2)=2,当n2时,(an2)(an12)=2,可得an+1=an1,因此数列an是周期为2的周期数列a1=3,3a2+2=2a2+23,解得a2=4,S2015=1007(3+4)+3=7052【点评】本题考查了数列的周期性,考查了计算能力,属于中档题2 【答案
6、】A【解析】解:由已知点A(0,1),B(3,2),得到=(3,1),向量=(4,3),则向量=(7,4);故答案为:A【点评】本题考查了有向线段的坐标表示以及向量的三角形法则的运用;注意有向线段的坐标与两个端点的关系,顺序不可颠倒3 【答案】A【解析】考点:二元一次不等式所表示的平面区域.4 【答案】B【解析】解:圆C:x2+y24x2y+1=0,即(x2)2+(y1)2 =4,表示以C(2,1)为圆心、半径等于2的圆由题意可得,直线l:x+ay1=0经过圆C的圆心(2,1),故有2+a1=0,a=1,点A(4,1)AC=2,CB=R=2,切线的长|AB|=6故选:B【点评】本题主要考查圆的
7、切线长的求法,解题时要注意圆的标准方程,直线和圆相切的性质的合理运用,属于基础题5 【答案】D【解析】解:y=2x,设切点为(a,a2)y=2a,得切线的斜率为2a,所以2a=tan45=1,a=,在曲线y=x2上切线倾斜角为的点是(,)故选D【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题6 【答案】C【解析】试题分析:由,则,两式作商,可得,所以,故选C考点:数列的通项公式7 【答案】B【解析】解:函数y=a1x(a0,a1)的图象恒过定点A(1,1),点A在直线mx+ny1=0(mn0)上,m+n=1则=(m+n)=2
8、+=4,当且仅当m=n=时取等号故选:B【点评】本题考查了“乘1法”与基本不等式的性质、指数函数的性质,属于基础题8 【答案】B【解析】【解析1】,所以【解析2】,9 【答案】B【解析】解:f(x)=f(x+2),函数f(x)为周期为2的周期函数,函数g(x)=,其图象关于点(2,3)对称,如图,函数f(x)的图象也关于点(2,3)对称,函数f(x)与g(x)在3,7上的交点也关于(2,3)对称,设A,B,C,D的横坐标分别为a,b,c,d,则a+d=4,b+c=4,由图象知另一交点横坐标为3,故两图象在3,7上的交点的横坐标之和为4+4+3=11,即函数y=f(x)g(x)在3,7上的所有零
9、点之和为11故选:B【点评】本题考查函数的周期性,函数的零点的概念,以及数形结合的思想方法属于中档题10【答案】B【解析】解:由题意故,即故两向量夹角的余弦值为=故两向量夹角的取值范围是45故选B【点评】本题考点是数量积表示两个向量的夹角,考查利用向量内积公式的变形形式求向量夹角的余弦,并进而求出两向量的夹角属于基础公式应用题11【答案】A【解析】试题分析:函数在区间上递减,在区间上递增,所以当x=1时,当x=3时,所以值域为。故选A。考点:二次函数的图象及性质。12【答案】A【解析】解: =i,则=i(1i)=1+i,可得z=1i故选:A二、填空题13【答案】2 【解析】由题意,得,准线为,
10、设、,直线的方程为,代入抛物线方程消去,得,所以,又设,则,所以,所以因为,解得,所以点的横坐标为214【答案】4 【解析】解:函数f(x)=,f(2)=42=,f(f(2)=f()=4故答案为:415【答案】 【解析】解:是第四象限角,则,又sin(+)=,cos(+)=cos()=sin(+)=,sin()=cos(+)=则tan()=tan()=故答案为:16【答案】【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦
11、定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现 及 、 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式.17【答案】(1,) 【解析】解:当2x1时,x=2,此时f(x)=xx=x+2当1x0时,x=1,此时f(x)=xx=x+1当0x1时,1x10,此时f(x)=f(x1)=x1+1=x当1x2时,0x11,此时f(x)=f(x1)=x1当2x3时,1x12,此时f(x)=f(x1)=x11=x2当3x4时,2x13,此时f(x)=f(x
12、1)=x12=x3设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(2,1),D(4,1)时有3个不同的交点,当经过点B(1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(1,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想18【答案】 【解析】解:点A(1,1),B(1,2),C(2,1),D(3,4),向量=(1+1,2
13、1)=(2,1),=(3+2,4+1)=(5,5);向量在方向上的投影是=三、解答题19【答案】 【解析】(本题满分为12分)解:(1)cos2A3cos(B+C)1=02cos2A+3cosA2=0,2分解得:cosA=,或2(舍去),4分又0A,A=6分(2)a=2RsinA=,又a2=b2+c22bccosA=b2+c2bcbc,bc3,当且仅当b=c时取等号,SABC=bcsinA=bc,三角形面积的最大值为 20【答案】 【解析】解:由合A=x|x25x60,集合B=x|6x25x+10,集合C=x|(xm)(m+9x)0A=x|1x6,C=x|mxm+9(1),(2)由AC=C,可
14、得AC即,解得3m121【答案】(1)圆与圆相离;(2)定值为2.【解析】试题分析:(1)若两圆关于直线对称,则圆心关于直线对称,并且两圆的半径相等,可先求得圆M的圆心,,然后根据圆心距与半径和比较大小,从而判断圆与圆的位置关系;(2)因为点G到AP和BP的距离相等,所以两个三角形的面积比值,根据点P在圆M上,代入两点间距离公式求和,最后得到其比值.试题解析:(1) 圆的圆心关于直线的对称点为,圆的方程为.,圆与圆相离.考点:1.圆与圆的位置关系;2.点与圆的位置关系.122【答案】 【解析】解:|3x1|x+2,解得原不等式的解集为x|x23【答案】 【解析】解:(1)由题意, =(2x+3
15、)(2x3)+3y2=3,可化为4x2+3y2=12,即:;点P的轨迹方程为;(2)当直线l的斜率不存在时,|AB|=4,不合要求,舍去;当直线l的斜率存在时,设方程为y=kx+1,A(x1,y1),B(x2,y2),代入椭圆方程可得:(4+3k2)x2+6kx9=0,x1+x2=,x1x2=,|AB|=|x1x2|=,k=,直线l的方程y=x+1【点评】本题考查了与直线有关的动点的轨迹方程,考查了直线与圆锥曲线的关系,考查了向量的坐标运算,训练了利用数量积,属于中档题24【答案】或.【解析】试题分析:根据两点的斜率公式,求得,结合图形,即可求解直线的斜率的取值范围.试题解析:由已知,所以,由图可知,过点的直线与线段有公共点, 所以直线的斜率的取值范围是:或.考点:直线的斜率公式.