1、数列的概念说课稿2 今天我将要为大家讲的课题是“数列(第一课时)” 一、教材结构与内容简析 本节内容在全书及章节的地位:数列(第一课时)是中等职业学校数学教材第二册第 一章第一节。数列是高中数学的重要内容之一,它的地位作用可以从三个方面来看:(1)数列有着广泛的实际应用。如堆放物品总数的计算要用到数列前n项和公式;又如产品规格设计的某些问题要用到等比数列的原理;再如储蓄、分期付款的有关计算也要用到数列的一些知识。(2)数列起着承前启后的作用。一方面,初中数学的许多内容在解决数列的某些问题中得到了充分运用,数列与前面学习的函数等知识有密切的联系;数列是刻画离散现象的函数,是一种重要的数学模型,人
2、们往往通过离散现象认识连续现象.另一方面,学习数列又为进一步学习数列的极限等内容作好了准备。因此就有必要研究数列。(3)数列是培养学生数学能力的良好题材。学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。所以说数列是高中数学重要内容之一 二、 教学目标 根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征 ,我制定如下教学目标: 1、基础知识目标:形成并掌握数列的概念,理解数列的通项公式。并通过数列与函数的比较加深对数列的认识。 2、能力训练目标: 培养学生观察、归纳、类比、联想等发现规律的一般方法。3、情感目标:让学生
3、在民主、和谐的共同活动中感受学习的乐趣。 三、 教学重点、难点、关键 本着课程标准,在吃透教材基础上,我觉得本节课是本章内容的第一节课,是学生学习本章的基础,为了本章后面知识的学习,首先必须掌握数列的概念,其次数列的通项公式是研究后面等差数列、等比数列的灵魂,所以我认为数列的概念及其通项公式是教学的重点。由特殊到一般,由现象到本质,要学生从一个数列的前几项或相邻的几项来观察、归纳、类比、联想出数列的通项公式,学生必须通过自己的努力寻找出数列的通项an与项数n之间的关系来,对学生的能力要求比较高,所以我认为建立数列的通项公式是教学的难点。我觉得教学的关键就是教会学生克服难点,办法是让学生学会观察
4、数列的前几项的特点,在观察和比较中揭示数列的变化规律。 下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈: 四、 教法、学法根据本节课的内容和学生的实际情况,本节课主要采用“提问法、观察法、发现法、启发式法相结合的方法”引导学生发现问题,探索问题,并解决问题。课程改革的具体目标之一是“改变课程实施过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力”。 我以建构主义理论为指导,从学情出发,采用着重于学生探索研究的启发式教学方法,结合师生共同讨论、
5、归纳总结。在课堂结构上,我根据学生的认知水平,设计了 创设情境引入概念观察归纳形成概念讨论研究深化概念即时训练巩固新知总结反思提高认识任务后延自主探究六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目标。五、 教学程序及设想(一) 创设情境引入概念 我经常在思考:长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。 1、由生活中的具体的数列实例引入: a、时间:时钟、挂历 b、植物:植物的茎 2、用古老
6、的有关国际象棋的传说引入,符合高一学生喜欢探究新奇奥妙事物的特点。有利于激发学生的学习兴趣。(二)观察归纳形成概念 由实例得出几列数,再有目的地设计,如自然数、自然数的倒数、大于零的偶数、开关(0,1,0,1,0,1,)、“一尺之棰,日取其半,永世不竭。”以及从1984年到2004年我国体育健儿参加六次奥运会获得的金牌数15,5,16,16,28,32所形成的数列,教师引导学生概括总结出本课新的知识点:数列的定义。(三)讨论研究深化概念 课前我精心设计的几个数列中已经含概了有穷数列、无穷数列、递增数列、递减数列、常数数列,等待学生观察、讨论、交流后掌握以上几个概念。数列的相关概念:数列中的每一
7、个数都叫这个数列的项,并且依次叫做这个数列的第一项(首项),第二项,第n项,。数列的一般形式可写成:a1,a2,a3,an,简记为an,其中an表示数列的第n项。 接着引导学生再观察以上几个数列的项与项数之间的关系,如果数列an的第n项an与序号n之间的关系可以用一个公式anf(n)来表示,那么这个公式就叫做这个数列的通项公式。 最后通过数列通项公式与函数解析式的对比研究,使学生得出数列通项公式anf(n)的图象是一群孤立的点。 在数列中,项数n与项an之间存在着对应关系。如果把项数n看作自变量,那么数列可以看作以自然数集(或它的有限子集1,2,3,n)为定义域的函数。当自变量由小到大依次取值
8、时对应的一列函数值。而数列的通项公式也就是相应函数的解析式。当我们把直角坐标系的横坐标看作项数n,纵坐标看作项an时,我们得到的图象就是一群孤立的点。(四)即时训练巩固新知 为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,并且把课本的例题熔入即时训练题中,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。(五)总结反思提高认识 由学生总结本节课所学习的主要内容:数列及其有关概念;根据数列的通项公式求其任意一项;根据数列的一些相邻项求数列的通项公式;数列与函数的关系(数列是一种特殊的函数)。让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;
9、通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。(六)任务后延自主探究 学生经过以上五个环节的学习,已经初步掌握了探究数列规律的一般方法,有待进一步提高认知水平,因此我针对学生素质的差异设计了有层次的训练题,留给学生课后自主探究,这样既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。六、简述板书设计。3.1数 列概念:2、例题(学生板书) 例题2 例题33、练习4.小结结束语:以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么”和“怎么教”,阐明了“为什么这样教”。希望各位老师对本堂课提出宝贵意见。