1、专题23 利用导数证明不等式一、多选题 1已知函数,数列的前n项和为,且满足,则下列有关数列的叙述正确的是( )ABCD2下列不等式正确的是( )A当时,B当时,C当时,D当时,3已知定义在R上的函数满足,则下列式子成立的是( )ABC是R上的增函数D,则有二、解答题4已知函数,若最小值为0.(1)求实数的值;(2)设,证明:.5已知函数,.(1)当时,求函数的最大值;(2)设,当,且,求证:.6已知函数,其中为自然对数的底数(1)当时,证明:;(2)设实数,是函数的两个零点,求实数的取值范围7已知,当时恒成立(1)求实数的取值范围;(2)当时,求证:8已知函数.(1)当时,求曲线在点处的切线
2、方程;(2)若,求证:.9已知函数.(1)若只有一个极值点,求的取值范围.(2)若函数存在两个极值点,记过点的直线的斜率为,证明:.10函数.(1)当时,求的单调区间;(2)当,时,证明:.11已知函数(1)讨论函数的单调区间;(2)当时,求证:12函数.(1)若,求的单调性;(2)当时,若函数有两个零点,求证:.13已知函数(1)试讨论的单调性;(2)若,证明:14已知函数.(1)当时,求的最小值;(2)若对任意恒有不等式成立.求实数的值;证明:.15已知a0,函数(1)若f(x)为减函数,求实数a的取值范围;(2)当x1时,求证:(e2.718)16已知函数,.(1)判断函数的单调性;(2)若,判断是否存在实数,使函数的最小值为2?若存在求出的值;若不存在,请说明理由;(3)证明:.17已知函数.(1)求证:;(2)函数,有两个不同的零点,.求证:.18已知函数,.(1)若函数在区间内是增函数,求的取值范围;(2)证明:.19已知函数.(1)若a= -2,求函数f(x)的单调区间;(2)若函数f(x)有两个极值点x1,x2,求证.20(1)当时,求证:;(2)若对于任意的恒成立,求实数k的取值范围;(3)设a0,求证;函数在上存在唯一的极大值点,且.