20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc

上传人(卖家):田田田 文档编号:327448 上传时间:2020-03-04 格式:DOC 页数:4 大小:1.33MB
下载 相关 举报
20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc_第1页
第1页 / 共4页
20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc_第2页
第2页 / 共4页
20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc_第3页
第3页 / 共4页
20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、优秀领先 飞翔梦想 成人成才 2.5 二次函数与一元二次方程第2课时 利用二次函数求方程的近似根学习目标:体会二次函数与方程之间的联系;掌握用图象法求方程的近似根;理解二次函数图象与x轴交点的个数与一元二次方程的根的个数之间的关系,及何时方程有两个不等的实根,两个相等的实根和没有实根;理解一元二次方程的根就是二次函数y=h(h是实数)图象交点的横坐标学习重点:本节重点把握二次函数图象与x轴(或y=h)交点的个数与一元二次方程的根的关系掌握此点,关键是理解二次函数y=ax2bxc图象与x轴交点,即y=0,即ax2bxc=0,从而转化为方程的根,再应用根的判别式,求根公式判断,求解即可,二次函数图

2、象与x轴的交点是二次函数的一个重要内容,在其考查中也有重要的地位学习难点:应用一元二次方程根的判别式,及求根公式,来对二次函数及其图象进行进一步的理解此点一定要结合二次函数的图象加以记忆学习过程:一、实例讲解:我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么(1).h和t的关系式是什么?(2).小球经过多少秒后落地?你有几种求解方法?与同伴进行交流. 二、议一议:在同一坐标系中

3、画出二次函数y=x2+2x,y=x2-2x+1,y=x2-2x+2的图象并回答下列问题:(1).每个图象与x轴有几个交点?(2).一元二次方程? x2+2x=0,x2-2x+1=0有几个根?验证一下一元二次方程x2-2x+2=0有根吗?(3).二次函数y=ax2+bx+c的图象和x轴交点的坐标与一元二次方程ax2+bx+c=0的根有什么关系?三、例题:【例1】已知二次函数y=kx27x7的图象与x轴有两个交点,则k的取值范围为【例2】抛物线y=ax2bxc与x轴交于点A(3,0),对称轴为x=1,顶点C到x轴的距离为2,求此抛物线表达式【例5】有一个二次函数的图象,三位学生分别说出了它的一些特

4、点:甲:对称轴是直线x=4;乙:与x轴两个交点的横坐标都是整数;丙:与y轴交点的纵坐标也是整数,且以这三点为顶点的三角形面积为3请写出满足上述全部特点的一个二次函数表达式四、随堂练习:1求下列二次函数的图象与x轴交点坐标,并作草图验证(1)y=x22x;(2)y=x22x32你能利用a、b、c之间的某种关系判断二次函数y=ax2bxc的图象与x轴何时有两个交点、一个交点,何时没有交点?五、课后练习:1抛物线y=a(x2)(x5)与x轴的交点坐标为2已知抛物线的对称轴是x=1,它与x轴交点的距离等于4,它在y轴上的截距是6,则它的表达式为3若a0,b0,c0,0,那么抛物线y=ax2bxc经过象

5、限4抛物线y=x22x3的顶点坐标是5若抛物线y=2x2(m3)xm7的对称轴是x=1,则m=6抛物线y=2x28xm与x轴只有一个交点,则m=7已知抛物线y=ax2bxc的系数有abc=0,则这条抛物线经过点8二次函数y=kx23x4的图象与x轴有两个交点,则k的取值范围9抛物线y=x22xa2的顶点在直线y=2上,则a的值是10抛物线y=3x25x与两坐标轴交点的个数为( )A3个B2个C1个D无11如图1所示,函数y=ax2bxc的图象过(1,0),则的值是( )A3B3CD12已知二次函数y=ax2bxc的图象如图2所示,则下列关系正确的是( )A01 B02 C12 D=113已知二次函数y=x2mxm2求证:无论m取何实数,抛物线总与x轴有两个交点14已知二次函数y=x22kxk2k2(1)当实数k为何值时,图象经过原点?(2)当实数k在何范围取值时,函数图象的顶点在第四象限内?15已知抛物线y=mx2(32m)xm2(m0)与x轴有两个不同的交点(1)求m的取值范围;(2)判断点P(1,1)是否在抛物线上;(3)当m=1时,求抛物线的顶点Q及P点关于抛物线的对称轴对称的点P的坐标,并过P、Q、P三点,画出抛物线草图 第 4 页 共 4 页

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 北师大版(2024) > 九年级下册
版权提示 | 免责声明

1,本文(20春九数下(北师大版)2.5 第2课时 利用二次函数求方程的近似根 导学案.doc)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|