1、2022年中考数学真题汇编:方程和方程组的应用1.(2022荆州)“爱劳动,劳动美”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动若甲、乙的速度比是,结果甲比乙提前20min到达基地,求甲、乙的速度设甲的速度为3xkm/h,则依题意可列方程为( )A. B. C. D. 2.(2022绥化)有一个容积为24的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x,由题意列方程,正确的是( )A. B. C. D. 3.(2022岳阳)我
2、国古代数学著作孙子算经中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人家的户数为( )A. 25B. 75C. 81D. 904.(2022十堰)我国古代数学名著张丘建算经中记载:“今有清酒一斗直粟十斗, 醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗酒价值3斗谷子, 现在拿30斗谷子,共换了5斗酒,问清洒, 酳酒各几斗? 如果设清酒斗,那么可列方程为()A. B. C.
3、x3+30-x10=5D. 5.(2022湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有张桌子,有条凳子,根据题意所列方程组正确的是( )A. B. C. D. 6.(2022宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人则1艘大船与1艘小船一次共可以满载游客的人数为( )A. 30B. 26C.
4、24D. 227.(2022随州)我国元朝朱世杰所著的算学启蒙中记载:“良马日行二百四十里,驽马日行一百五十里驽马先行一十二日,问良马几何追及之”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x天可以追上慢马,则可列方程为( )A. B. C. D. 8.(2022恩施州)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是( )A. B. C. D. 9.(2022绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差
5、别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为_个10.(2022江汉油田、潜江、天门、仙桃)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货_吨11.(2022吉林)九章算术中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛根据题意,可列方程组为_12.(2022岳阳)喜迎二十大,“龙舟故里”赛龙舟丹丹在汩罗
6、江国际龙舟竞渡中心广场点处观看200米直道竞速赛如图所示,赛道为东西方向,赛道起点位于点的北偏西方向上,终点位于点的北偏东方向上,米,则点到赛道的距离约为_米(结果保留整数,参考数据:)13.(2022荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB20cm,底面直径BC12cm,球的最高点到瓶底面的距离为32cm,则球的半径为_cm(玻璃瓶厚度忽略不计)14.(2022黄冈、孝感、咸宁)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离已知乙建筑物的高度为,则甲建筑物的高度为_(,结果保留整数)15.(2022娄底)九年级融融陪同父母选购家
7、装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点是的黄金分割点,即延长与相交于点,则_.(精确到0.001) 16.(2022吉林)刘芳和李婷进行跳绳比赛已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等求李婷每分钟跳绳的个数17.(2022恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活动已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8
8、辆客车,怎样租车可使总费用最少?18.(2022常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行驶需要4小时,某天,他们以平常的速度行驶了的路程时遇到了暴雨,立即将车速减少了20千米小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?19. 某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不超过1280元,问至少买乙种快餐多少份?20.(2022岳阳)为迎接湖南省第十四届运动会在岳阳举行,某班组织
9、学生参加全民健身线上跳绳活动,需购买A,两种跳绳若干若购买3根A种跳绳和1根种跳绳共需140元;若购买5根A种跳绳和3根种跳绳共需300元(1)求,两种跳绳的单价各是多少元?(2)若该班准备购买,两种跳绳共46根,总费用不超过1780元,那么至多可以购买种跳绳多少根?21.(2022永州)受第24届北京冬季奥林匹克运动会的形响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道端以平均米/秒的速度滑到端,用了24秒;第二次从滑雪道端以平均米/秒的速度滑到端,用了20秒(1)求的值;(2)设小勇从滑雪道端滑到瑞的平均速度为米/秒,所用时间为秒,请用含的代数式表示(不要求写出的取值范
10、围)22.(2022娄底)“绿水青山就是金山银山”科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶问这三棵银杏树一年的平均滞尘总量约多少千克?23.(2022江汉油田、潜江、天门、仙桃)小红同学在数学活动课中测量旗杆的高度,如图,己知测角仪的高度为1.58米,她在A点观测杆顶E
11、的仰角为30,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60,求旗杆的高度(结果保留小数点后一位)(参考数据:)24.(2022宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为拱高(弧的中点到弦的距离)连接(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到)25.(2022恩施州)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣某活动小组赏湖之余,为了
12、测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60,他们向南走50m到达D点,测得古亭B位于北偏东45,求古亭与古柳之间的距离AB的长(参考数据:,结果精确到1m)26.(2022怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园如图,纪念园中心点A位于C村西南方向和B村南偏东60方向上,C村在B村的正东方向且两村相距2.4千米有关部门计划在B、C两村之间修一条笔直的公路来连接两村问该公路是否穿过纪念园?试通过计算加以说明 (参考数据:1.73,1.41)27.(2022荆州)荆州城徽“金凤腾飞”立于古城东门外如图,某校学生测量其高AB(含底座),先
13、在点C处用测角仪测得其顶端A的仰角为32,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45,已知B,E,C三点在同一直线上,测角仪离地面的高度CDEF1.5m,求城徽的高AB(参考数据:,)28.(2022湘潭)为落实国家关于全面加强新时代大中小学劳动教育的意见,某校准备在校园里利用围墙(墙长)和长的篱笆墙,围成、两块矩形劳动实践基地某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图,全部利用围墙的长度,但要在区中留一个宽度的水池且需保证总种植面积为,试分别确定、的长;(2)方案二:如图,使围成的两块矩形总种植面积最
14、大,请问应设计为多长?此时最大面积为多少?29.(2022宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元求的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了求6月份每吨再生纸的利润是多少元?
15、30.(2022荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量)经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y24x,第一年除60万元外其他成本为8元/件(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件求该产品第一年的售价;若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?31.(2022衡阳)冰墩墩(Bing Dwen Dwen)、雪容融(Shuey Rhon R
16、hon)分别是2022年北京冬奥会、冬残奥会的吉样物冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?32.(2022十堰)某商户购进一批童装,40天销售完毕根据所记录的数据发现
17、,日销售量(件)与销售时间(天)之间的关系式是 ,销售单价(元/件)与销售时间(天)之间的函数关系如图所示(1)第15天的日销售量为_件;(2)当时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?33.(2022怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已知每件雨衣比每双雨鞋贵5元(1)求每件雨衣和每双雨鞋各多少元?(2)为支持今年防洪工作,该超市今年的雨衣和雨鞋单价在去年的基础上均下降了20%,并按套(即一件雨衣和一双雨鞋为一套)
18、优惠销售 优惠方案为:若一次购买不超过5套,则每套打九折:若一次购买超过5套,则前5套打九折,超过部分每套打八折设今年该部门购买了a套,购买费用为W元,请写出W关于a的函数关系式(3)在(2)的情况下,今年该部门购买费用不超过320元时最多可购买多少套?34.(2022江汉油田、潜江、天门、仙桃)某超市销售一种进价为18元/千克的商品,经市场调查后发现,每天的销售量y(千克)与销售单价x(元/千克)有如下表所示的关系:销售单价x(元/千克)2022.52537.540销售量y(千克)3027.52512.510(1)根据表中的数据在下图中描点,并用平滑曲线连接这些点,请用所学知识求出y关于x的
19、函数关系式;(2)设该超市每天销售这种商品的利润为w(元)(不计其它成本),求出w关于x的函数关系式,并求出获得最大利润时,销售单价为多少;超市本着“尽量让顾客享受实惠”的销售原则,求(元)时的销售单价2022年中考数学真题汇编:方程和方程组的应用参考答案1.(2022荆州)“爱劳动,劳动美”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动若甲、乙的速度比是,结果甲比乙提前20min到达基地,求甲、乙的速度设甲的速度为3xkm/h,则依题意可列方程为( )A. B. C. D. 【答案】解:设甲的速度为3xkm/h,则乙的速度为4xkm/h,则,故选:A2.(2022绥
20、化)有一个容积为24的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟,设细油管的注油速度为每分钟x,由题意列方程,正确的是( )A. B. C. D. 【答案】解:细油管的注油速度为每分钟,粗油管的注油速度为每分钟,故选:A3.(2022岳阳)我国古代数学著作孙子算经中有这样一道题,原文如下:今有百鹿入城,家取一鹿,不尽,又三家共一鹿,适尽,问:城中家几何?大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问:城中有多少户人家?在这个问题中,城中人
21、家的户数为( )A. 25B. 75C. 81D. 90【答案】解:设城中有户人家,依题意得:,解得:,城中有75户人家故选:B4.(2022十堰)我国古代数学名著张丘建算经中记载:“今有清酒一斗直粟十斗, 醐洒一斗直粟三斗,今持粟三斛,得酒五斗,问清跴酒各几何?”大意是:现有一斗清酒价值10斗谷子,一斗酒价值3斗谷子, 现在拿30斗谷子,共换了5斗酒,问清洒, 酳酒各几斗? 如果设清酒斗,那么可列方程为()A. B. C. x3+30-x10=5D. 【答案】解:根据题意,得:10x+3(5x)=30,故选:A5.(2022湘潭)为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,
22、湘潭市举办了第10届青少年机器人竞赛组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有张桌子,有条凳子,根据题意所列方程组正确的是( )A. B. C. D. 【答案】解:根据题意可列方程组,故选:B6.(2022宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人则1艘大船与1艘小船一次共可以满载游客的人数为( )A. 30B. 26C. 24D. 22【答案】设1艘大船与1艘小船分别可载x人,y人,依题意:
23、(+)3得:故选:B7.(2022随州)我国元朝朱世杰所著的算学启蒙中记载:“良马日行二百四十里,驽马日行一百五十里驽马先行一十二日,问良马几何追及之”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x天可以追上慢马,则可列方程为( )A. B. C. D. 【答案】设快马x天可以追上慢马,由题意可知:故选:A8.(2022恩施州)一艘轮船在静水中的速度为30km/h,它沿江顺流航行144km与逆流航行96km所用时间相等,江水的流速为多少?设江水流速为vkm/h,则符合题意的方程是( )A. B. C. D. 【答案】解:由题意得
24、:轮船的顺流速度为,逆流速度为,则可列方程为,故选:A9.(2022绥化)一个不透明的箱子中有5个红球和若干个黄球,除颜色外无其它差别.若任意摸出一个球,摸出红球的概率为,则这个箱子中黄球的个数为_个【答案】解:设:黄球的个数为x个,解得:,检验:将代入,值不为零,是方程的解,黄球的个数为15个,故答案为:1510.(2022江汉油田、潜江、天门、仙桃)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货_吨【答案】解:设每辆大货车一次可以运货x吨,每辆小货车一次可以运货y吨,依题意,得:,两式相加得8x+6y
25、=47,4x+3y=23.5(吨) ,故答案为:23.511.(2022吉林)九章算术中记载了一道数学问题,其译文为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音h,是古代一种容量单位),1个大桶加上5个小桶可以盛酒2斛1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒斛、1个小桶可以盛酒斛根据题意,可列方程组为_【答案】由题意得:故答案为:12.(2022岳阳)喜迎二十大,“龙舟故里”赛龙舟丹丹在汩罗江国际龙舟竞渡中心广场点处观看200米直道竞速赛如图所示,赛道为东西方向,赛道起点位于点的北偏西方向上,终点位于点的北偏东方向上,米,则点到赛道的距离约为_米(结果保留
26、整数,参考数据:)【答案】解:过点作,垂足为, 设米,在中,(米),在中,(米),米,米,点到赛道的距离约为87米,故答案为:8713.(2022荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB20cm,底面直径BC12cm,球的最高点到瓶底面的距离为32cm,则球的半径为_cm(玻璃瓶厚度忽略不计)【答案】如下图所示,设球半径为rcm,则OG=EG-r=EF-GF-r=EF-AB-r=32-20-r=(12-r)cm,EG过圆心,且垂直于AD,G为AD的中点,则AG=0.5AD=0.512=6cm,在中,由勾股定理可得,即,解方程得r=7.5,则球的半径为7.5cm14.(2022黄冈
27、、孝感、咸宁)如图,有甲乙两座建筑物,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离已知乙建筑物的高度为,则甲建筑物的高度为_(,结果保留整数)【答案】解:如图,过点作于点,设,根据题意可得:,四边形是矩形,从甲建筑物点处测得乙建筑物点的俯角为,点的俯角为,为两座建筑物的水平距离,乙建筑物的高度为,在中,在中,即,解得,经检验是原分式方程的解且符合题意,故答案为:15.(2022娄底)九年级融融陪同父母选购家装木地板,她感觉某品牌木地板拼接图(如实物图)比较美观,通过手绘(如图)、测量、计算发现点是的黄金分割点,即延长与相交于点,则_.(精确到0.001) 【答案】解
28、:如图,设每个矩形的长为x,宽为y,则DEADAExy,由题意易得GEMEMFMFG90,四边形EFGM是矩形,EGMFy,xy0.618x,解得y0.382x,EG0.618DE故答案为:0.61816.(2022吉林)刘芳和李婷进行跳绳比赛已知刘芳每分钟比李婷多跳20个,刘芳跳135个所用的时间与李婷跳120个所用的时间相等求李婷每分钟跳绳的个数【答案】解:设李婷每分钟跳绳的个数为个,则刘芳每分钟跳绳的个数为个,由题意得:,解得,经检验,是所列分式方程的解,且符合题意,答:李婷每分钟跳绳的个数为160个17.(2022恩施州)某校计划租用甲、乙两种客车送180名师生去研学基地开展综合实践活
29、动已知租用一辆甲型客车和一辆乙型客车共需500元,租用2辆甲型客车和3辆乙型客车共需1300元甲型客车每辆可坐15名师生,乙型客车每辆可坐25名师生(1)租用甲、乙两种客车每辆各多少元?(2)若学校计划租用8辆客车,怎样租车可使总费用最少?【答案】(1)解:设甲种客车每辆元,乙种客车每辆元,依题意知, ,解得 ,答:甲种客车每辆元,乙种客车每辆元;(2)解:设租车费用为元,租用甲种客车 辆,则乙种客车 辆,解得:,随的增大而减小,取整数,最大为,时,费用最低为(元,(辆答:租用甲种客车5辆,乙种客车3辆,租车费用最低为1900元18.(2022常德)小强的爸爸平常开车从家中到小强奶奶家,匀速行
30、驶需要4小时,某天,他们以平常的速度行驶了的路程时遇到了暴雨,立即将车速减少了20千米小时,到达奶奶家时共用了5小时,问小强家到他奶奶家的距离是多少千米?【答案】解:设小强家到他奶奶家的距离是千米,则平时每小时行驶千米,减速后每小时行驶千米,由题可知:遇到暴雨前用时2小时,遇到暴雨后用时5-2=3小时,则可得:,解得:,答:小强家到他奶奶家的距离是240千米19. 某班去革命老区研学旅行,研学基地有甲乙两种快餐可供选择,买1份甲种快餐和2份乙种快餐共需70元,买2份甲种快餐和3份乙种快餐共需120元(1)买一份甲种快餐和一份乙种快餐各需多少元?(2)已知该班共买55份甲乙两种快餐,所花快餐费不
31、超过1280元,问至少买乙种快餐多少份?【答案】(1)解:设一份甲种快餐需元,一份乙种快餐需元,根据题意得,解得答:买一份甲种快餐需元,一份乙种快餐需元;(2)设购买乙种快餐份,则购买甲种快餐份,根据题意得,解得至少买乙种快餐37份答:至少买乙种快餐37份20.(2022岳阳)为迎接湖南省第十四届运动会在岳阳举行,某班组织学生参加全民健身线上跳绳活动,需购买A,两种跳绳若干若购买3根A种跳绳和1根种跳绳共需140元;若购买5根A种跳绳和3根种跳绳共需300元(1)求,两种跳绳的单价各是多少元?(2)若该班准备购买,两种跳绳共46根,总费用不超过1780元,那么至多可以购买种跳绳多少根?【答案】
32、(1)解:设A种跳绳的单价为元,种跳绳的单价为元根据题意得:,解得:,答:A种跳绳的单价为30元,种跳绳的单价为50元(2)设购买种跳绳根,则购买A种跳绳根,由题意得:,解得:,答:至多可以购买种跳绳20根21.(2022永州)受第24届北京冬季奥林匹克运动会的形响,小勇爱上了雪上运动.一天,小勇在滑雪场训练滑雪,第一次他从滑雪道端以平均米/秒的速度滑到端,用了24秒;第二次从滑雪道端以平均米/秒的速度滑到端,用了20秒(1)求的值;(2)设小勇从滑雪道端滑到瑞的平均速度为米/秒,所用时间为秒,请用含的代数式表示(不要求写出的取值范围)【答案】(1)根据题意,得解这个方程,得(2)22.(20
33、22娄底)“绿水青山就是金山银山”科学研究表明:树叶在光合作用后产生的分泌物能够吸附空气中的悬浮颗粒物,具有滞尘净化空气的作用已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少,若一片国槐树叶与一片银杏树叶一年的平均滞尘总量为(1)请分别求出一片国槐树叶和一片银杏树叶一年的平均滞尘量;(2)娄底市双峰县九峰山森林公园某处有始于唐代的三棵银杏树,据估计三棵银杏树共有约50000片树叶问这三棵银杏树一年的平均滞尘总量约多少千克?【答案】(1)解:设一片国槐树叶一年的平均滞尘量为mg,则一片银杏树叶一年的平均滞尘量为mg,则 解得: 答:一片国槐树叶和一片银杏树叶一年的平均滞尘量
34、分别为22mg,40mg(2)50000(mg),而2000000mg=2000g=2kg,答:这三棵银杏树一年的平均滞尘总量约2千克23.(2022江汉油田、潜江、天门、仙桃)小红同学在数学活动课中测量旗杆的高度,如图,己知测角仪的高度为1.58米,她在A点观测杆顶E的仰角为30,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60,求旗杆的高度(结果保留小数点后一位)(参考数据:)【答案】解:过点D作DGEF于点G,设EG=x,由题意可知:EAG=30,EDG=60,AD=20米,GF=1.58米在RtAEG中,tanEAG=,AG=x,在RtDEG中,tanEDG=,DG=
35、x,x-x=20,解得:x17.3,EF=1.58+x=18.9(米)答:旗杆的高度约为18.9米24.(2022宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为桥的跨度(弧所对的弦长),设所在圆的圆心为,半径,垂足为拱高(弧的中点到弦的距离)连接(1)直接判断与的数量关系;(2)求这座石拱桥主桥拱的半径(精确到)【答案】(1)解:半径,故答案为:(2)设主桥拱半径为,由题意可知,在中,由勾股定理,得,即,解得,因此,这座石拱桥主桥拱半径约为25.(2022
36、恩施州)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A处测得古亭B位于北偏东60,他们向南走50m到达D点,测得古亭B位于北偏东45,求古亭与古柳之间的距离AB的长(参考数据:,结果精确到1m)【答案】解:如图,过点作的垂直,交延长线于点,由题意得:,设,则,在中,在中,则,解得,则,答:古亭与古柳之间的距离的长约为26.(2022怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园如图,纪念园中心点A位于C村西南方向和B村南偏东60方向上,C村在B村的正东方向且两村相距2.4千米有关部
37、门计划在B、C两村之间修一条笔直的公路来连接两村问该公路是否穿过纪念园?试通过计算加以说明 (参考数据:1.73,1.41)【答案】不穿过,理由如下:过点A作ADBC,交BC于点D,根据题意可知ACD=45,ABD=30.设CD=x,则BD=2.4-x,在RtACD中,ACD=45,CAD=45,AD=CD=x在RtABD中,即,解得x=0.88,可知AD=0.88千米=880米,因为880米800米,所以公路不穿过纪念园27.(2022荆州)荆州城徽“金凤腾飞”立于古城东门外如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32,再由点C向城徽走6.6m到E处,测得
38、顶端A的仰角为45,已知B,E,C三点在同一直线上,测角仪离地面的高度CDEF1.5m,求城徽的高AB(参考数据:,)【答案】解:如图,延长DF交AB于M,由题意可得: 所以四边形BMFE,四边形EFCD,四边形BMDC都为矩形;设 而 由 解得: 经检验符合题意,所以 答:城徽的高AB约为米28.(2022湘潭)为落实国家关于全面加强新时代大中小学劳动教育的意见,某校准备在校园里利用围墙(墙长)和长的篱笆墙,围成、两块矩形劳动实践基地某数学兴趣小组设计了两种方案(除围墙外,实线部分为篱笆墙,且不浪费篱笆墙),请根据设计方案回答下列问题:(1)方案一:如图,全部利用围墙的长度,但要在区中留一个
39、宽度的水池且需保证总种植面积为,试分别确定、的长;(2)方案二:如图,使围成的两块矩形总种植面积最大,请问应设计为多长?此时最大面积为多少?【答案】(1)解:两块篱笆墙的长为12m,篱笆墙的宽为AD=GH=BC=(21-12)3=3m,设CG为am,DG为(12-a)m,那么ADDC-AEAH=32即123-1(12-a)=32解得:a=8CG=8m,DG=4m(2)解:设两块矩形总种植面积为ym2,BC长为xm,那么AD=HG=BC=xm,DC=(21-3x)m,由题意得, 两块矩形总种植面积=BCDC即y=x(21-3x)y=-3x2+21x=-3(x-)2+21-3x12x3当BC=m时
40、,y最大=m229.(2022宜昌)某造纸厂为节约木材,实现企业绿色低碳发展,通过技术改造升级,使再生纸项目的生产规模不断扩大该厂3,4月份共生产再生纸800吨,其中4月份再生纸产量是3月份的2倍少100吨(1)求4月份再生纸的产量;(2)若4月份每吨再生纸的利润为1000元,5月份再生纸产量比上月增加5月份每吨再生纸的利润比上月增加,则5月份再生纸项目月利润达到66万元求的值;(3)若4月份每吨再生纸的利润为1200元,4至6月每吨再生纸利润的月平均增长率与6月份再生纸产量比上月增长的百分数相同,6月份再生纸项目月利润比上月增加了求6月份每吨再生纸的利润是多少元?【答案】(1)解:设3月份再
41、生纸产量为吨,则4月份的再生纸产量为吨,由题意得:,解得:,答:4月份再生纸的产量为500吨;(2)解:由题意得:,解得:或(不合题意,舍去),的值20;(3)解:设4至6月每吨再生纸利润的月平均增长率为,5月份再生纸的产量为吨,答:6月份每吨再生纸的利润是1500元30.(2022荆州)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量)经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y24x,第一年除60万元外其他成本为8元/件(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第
42、二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件求该产品第一年的售价;若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?【答案】(1) (2)第一年的售价为每件16元,第二年的最低利润为万元31.(2022衡阳)冰墩墩(Bing Dwen Dwen)、雪容融(Shuey Rhon Rhon)分别是2022年北京冬奥会、冬残奥会的吉样物冬奥会来临之际,冰墩墩、雪容融玩偶畅销全国小雅在某网店选中两种玩偶,决定从该网店进货并销售,第一次小雅用1400元购进了冰墩墩玩偶15个和雪容融玩偶5个,已知购进1个冰墩墩玩偶和1个雪容融玩偶共需136元,销售
43、时每个冰墩墩玩偶可获利28元,每个雪容融玩偶可获利20元(1)求两种玩偶的进货价分别是多少?(2)第二次小雅进货时,网店规定冰墩墩玩偶进货数量不得超过雪容融玩偶进货数量的1.5倍小雅计划购进两种玩偶共40个,应如何设计进货方案才能获得最大利润,最大利润是多少元?【答案】(1)解:设冰墩墩进价为元,雪容融进价为元得,解得冰墩墩进价为72元,雪容融进价为64元(2)设冰墩墩进货个,雪容融进货个,利润为元,则,所以随增大而增大,又因为冰墩墩进货量不能超过雪容融进货量的1.5倍,得,解得当时,最大,此时,答:冰墩墩进货个,雪容融进货个时,获得最大利润,最大利润为元32.(2022十堰)某商户购进一批童
44、装,40天销售完毕根据所记录的数据发现,日销售量(件)与销售时间(天)之间的关系式是 ,销售单价(元/件)与销售时间(天)之间的函数关系如图所示(1)第15天的日销售量为_件;(2)当时,求日销售额的最大值;(3)在销售过程中,若日销售量不低于48件的时间段为“火热销售期”,则“火热销售期”共有多少天?【答案】(1)解:当时,销售量;故答案为30;(2)设销售额为元,当时,由图可知,销售单价,此时销售额,随的增大而增大当时,取最大值此时当时,有图可知,p是x的一次函数,且过点(20,40)、(40,30)设销售单价,将(20,40)、(40,30)代入得: 解得 ,当时,随的增大而增大当时,取最大值此时的最大值为2100,当时,日销售额的最大值为2100元;(3)当时,解得当,解得,共9天日销售量不低于48件的时间段有9天33.(2022怀化)去年防洪期间,某部门从超市购买了一批数量相等的雨衣(单位:件)和雨鞋(单位:双),其中购买雨衣用了400元,购买雨鞋用了350元,已