最优化理论与方法lec7constrained课件.ppt

上传人(卖家):三亚风情 文档编号:3319608 上传时间:2022-08-19 格式:PPT 页数:43 大小:1.70MB
下载 相关 举报
最优化理论与方法lec7constrained课件.ppt_第1页
第1页 / 共43页
最优化理论与方法lec7constrained课件.ppt_第2页
第2页 / 共43页
最优化理论与方法lec7constrained课件.ppt_第3页
第3页 / 共43页
最优化理论与方法lec7constrained课件.ppt_第4页
第4页 / 共43页
最优化理论与方法lec7constrained课件.ppt_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、Trust-Region MethodsIntroduction Line search generate a search direction Trust-region define a region around the current iterate Trust-region and line search stepsIntroduction 12TTkkkkmpffpp B psome symmetric matrix 212TTkkkkfxpffppfxtp pTaylor-series:2OpIntroduction2If kkBf x the approximation erro

2、r is 3OpTo obtain each step,we seek a solution of the subproblem 1min s.t.2nTTkkkkkpmpffpp B pp 2 ball(1)Introduction1BkkkpBf Full Step In other cases,the solution of the subproblem is not so obvious.In any case,we need only an approximate solution to obtain convergence and good practical behavior.O

3、utline of the algorithm 0kkkkkkkfxfxpmmp actual reduction predicted reduction always 0Outline of the algorithman overall bound Outline of the algorithmshinkexpandreach the boundarydo not alterThe Cauchy pointcan be quantified in terms of the Cauchy pointCauchy Point Calculationargmin s.t.nsTkkkkp Rp

4、ffpp 0argmin s.t.sskkkkkmpp Cskkkpp The Cauchy pointskkkkpff 0Tkkkf Bf the largest value 1k 0Tkkkf Bf31Tkkkkkff Bf The Cauchy pointIn summary,we haveCkkkkkpff where31if 0;min,1otherwise.TkkkkTkkkkkf Bfff Bf Improving on the Cauchy pointthe exact Hessian or a quasi-Newton approximation can be expecte

5、d to yield superlinear convergence The dogleg method 1min s.t.2ndefTTpm pfg pp Bpp *,when BBppp Feasible*,when is small.gpg The dogleg method The first line segment:it runs from the origin to the unconstrained minimizer along the steepest descent directionTUTg gpgg Bg Exact trajectory and dogleg app

6、rox.OThe dogleg methodUpBp The second line segment:it runs from to .,01,1,12.UUBUppppp In fact,it is not even necessary to carry out a search because the dogleg path intersects the trust-region boundary at most once and the intersection point can be computed analytically.Lemma 222221121211.22TUBUUUB

7、UBUhpppppppppp For(i),defineLemma(contd)2121110,TTUUBUBUUBTTTTTTTTTTThppppppppg gg gggB gg Bgg Bgg gg B gg gg Bgg Bgg B g Lemma(contd)0TTBUUBUBUTBUUBUTBUBhppgBpppB ppppgBpB ppppgBp 221UBUppp Global convergence 10min,2kCkkkkkkfmmpfBReduction obtained by the CP:by the dogleg method:10min,kkkkkkkfmmpcf

8、B(2)Usually,Ckkkkmpmp10,1c Global convergenceGeneral Assumptions:uniformly bounded in norm,for some constant 1kkp 0liminf0kkf140,lim0kkfIntroductionA general formulation is 0,min subject to 0,nixicxiEfxcxiIe.g.,twice continuously differentiable,etc.equality constraints inequality constraints|0,;0,ii

9、x cxiE cxiI feasible set:minxf xThe compact form:Review Our aim in this part is to derive similar conditions to characterize the solutions of constrained optimization problems.Local and global solutions2222min,subject to 1nxxxExample1:infinitely many local minima Example2:222121min1000.01,subject to

10、 cos0 xxxx12,1,for 1,3,5,x xkk Smoothness1211xxxSingle constraint:121212121,1,1,1.xxxxxxxxA set of smooth constraints:Example 1Definition:A SINGLE EQUALITY CONSTRAINT221212min s.t.20 xxxx 1222112,12f xxxIEcxxx(1)Example 1(contd)*11fxcx Here,*112 Example 1(contd)11110TTcxdcxcxdcxd 0Tf xdf xf xd So to

11、 first order,100TTcxdfxdif there exists a direction d that satisfies both,then?Example 1(contd)In which case?Example 1(contd)11 1,L xf xcx 111,xL xf xcx*1,0 xL x*11fxcx Lagrange multiplier Is this sufficient to be necessary condition?Example 2A SINGLE INEQUALITY CONSTRAINT221212min s.t.20 xxxx(2)*11

12、fxcx the sign is different!Example 2(contd)0Tfxd 1110TcxdcxcxdExample 2(contd)11f xdcxcxf x In particular,The only situation in which such a direction fails to exist is when 0f xExample 2(contd)The discussed conditions therefore become 100TTfxdcxdThe two regions fail to intersect only when 111 for s

13、ome 0f xcx same direction Example 2(contd)The optimality conditions for both cases I and II can be summarized neatly with reference to the Lagrangian function.*11,0,for some 0 xL x where we also require that*1 10cxcomplementarity condition Case ICase IIExample 3TWO INEQUALITY CONSTRAINTS2212122min s

14、.t.20,0 xxxxx(3)It is easy to see that the solution lies at 2,0Ta point at which both two constraints are active.Example 3(contd)0,1,2,0TTicxdiIfxd 1 12 2,L xf xcxcx Example 3(contd)*,0,for some 0 xL x*1 1220,0cxcx*12102 2,110fxcxcx *1 2 21 Example 3(contd)2,0Tx again both constraints are active,but

15、 f x1,0Td One first-order feasible descent direction from this point is simplythere are many others.Example 3(contd)1,0Tx 1210,0,0TTTcxdcxdfxd 210,11f xcx 1 1,2 4d To show that optimality conditions fail,we note that 110 0cx 220f xcx exist?First-order necessary conditions the relation the nonnegativity of for all inequality constraints the complementarity condition that is required for all the inequality constraints.,0 xL x i icx 0iicxGeneralize the observationState in a rigorous fashion

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(最优化理论与方法lec7constrained课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|