1、公众号码:王校长资源站第2课时数列的综合问题题型一数列与函数例1数列an的前n项和为Sn,2Snan12n11,nN,且a1,a25,19成等差数列.(1)求a1的值;(2)证明为等比数列,并求数列an的通项公式;(3)设bnlog3(an2n),若对任意的nN,不等式bn(1n)n(bn2)60恒成立,试求实数的取值范围.解(1)在2Snan12n11,nN中,令n1,得2S1a2221,即a22a13,又2(a25)a119,则由解得a11.(2)当n2时,由得2anan1an2n,则1,又a25,则1.数列是以为首项,为公比的等比数列,1n1,即an3n2n.(3)由(2)可知,bnlo
2、g3(an2n)n.当bn(1n)n(bn2)60恒成立时,即(1)n2(12)n60(nN)恒成立.设f(n)(1)n2(12)n6(nN),当1时,f(n)n60恒成立,则1满足条件;当1时,由于对称轴n0,则f(n)在1,)上单调递减,f(n)f(1)341满足条件,综上所述,实数的取值范围是1,).思维升华 数列与函数的交汇问题(1)已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题;(2)已知数列条件,解决函数问题,解题时要注意数列与函数的内在联系,掌握递推数列的常见解法.跟踪训练1(2018葫芦岛模拟)已知数列an满足a11,2an1an,数列bn满足bn2l
3、og2a2n1.(1)求数列an,bn的通项公式;(2)设数列bn的前n项和为Tn,求使得2Tn4n2m对任意正整数n都成立的实数m的取值范围.解(1)由a11,an0,an是首项为1,公比为的等比数列,ann1.bn2log22n2n2.(2)由(1)得,Tnn23n,m2n26n对任意正整数n都成立.设f(n)2n26n,f(n)2n26n22,当n1或2时,f(n)的最大值为4,m4.即m的取值范围是4,).题型二数列与不等式例2已知数列an中,a1,其前n项的和为Sn,且满足an(n2).(1)求证:数列是等差数列;(2)证明:S1S2S3Sn1.证明(1)当n2时,SnSn1,整理得
4、Sn1Sn2SnSn1(n2),2,从而构成以2为首项,2为公差的等差数列.(2)由(1)可知,(n1)22n,Sn.当n1时,Sn1,方法一当n2时,Sn,S1S2S3Sn 11.原不等式得证.方法二当n2时,S1S2S3Sn,1.原命题得证.思维升华 数列与不等式的交汇问题(1)函数方法:即构造函数,通过函数的单调性、极值等得出关于正实数的不等式,通过对关于正实数的不等式特殊赋值得出数列中的不等式;(2)放缩方法:数列中不等式可以通过对中间过程或者最后的结果放缩得到.跟踪训练2已知数列an为等比数列,数列bn为等差数列,且b1a11,b2a1a2,a32b36.(1)求数列an,bn的通项
5、公式;(2)设cn,数列cn的前n项和为Tn,证明:Tn0,所以Tn.又因为Tn在1,)上单调递增,所以当n1时,Tn取最小值T1,所以Tn.题型三数列与数学文化例3我国古代名著九章算术中有这样一段话:“今有金锤,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,中间三尺重几何.”意思是:“现有一根金锤,长5尺,头部1尺,重4斤,尾部1尺,重2斤,且从头到尾,每一尺的重量构成等差数列,问中间三尺共重多少斤.”()A.6斤 B.7斤 C.8斤 D.9斤答案D解析原问题等价于等差数列中,已知a14,a52,求a2a3a4的值.由等差数列的性质可知a2a4a1a56,a33,则a2a3a49,即中间三尺共
6、重9斤.思维升华我国古代数学涉及等差、等比数列的问题很多,解决这类问题的关键是将古代实际问题转化为现代数学问题,掌握等差、等比数列的概念、通项公式和前n项和公式.跟踪训练3中国人在很早就开始研究数列,中国古代数学著作九章算术、算法统宗中都有大量古人研究数列的记载.现有数列题目如下:数列an的前n项和Snn2,nN,等比数列bn满足b1a1a2,b2a3a4,则b3等于()A.4 B.5 C.9 D.16答案C解析由题意可得b1a1a2S2221,b2a3a4S4S242223,则等比数列bn的公比q3,故b3b2q339.1.(2018包头模拟)设数列an的前n项和为Sn,且Snan1.(1)
7、求数列an的通项公式;(2)若f(x),设bnf(a1)f(a2)f(an),求数列的前n项和Tn.解(1)由Snan1得Sn1an11,两式相减得,Sn1Snan1an,即 an1an1an,即 (n1),所以数列an是公比为的等比数列,又由a1a11得a1,所以ana1qn1n.(2)因为bnf(a1)f(a2)f(an)12n,所以2,所以Tn22.2.已知等差数列an的公差d0,a10,其前n项和为Sn,且a22,S3,S4成等比数列.(1)求数列an的通项公式;(2)若bn,数列bn的前n项和为Tn,求证:Tn2n.(1)解由a10得an(n1)d,Sn,因为a22,S3,S4成等比
8、数列,所以S(a22)S4,即(3d)2(d2)6d,整理得3d212d0,即d24d0,因为d0,所以d4,所以an(n1)d4(n1)4n4.(2)证明由(1)可得Sn12n(n1),所以bn22,所以Tn2n2n1,所以Tn2n0,所以q2,x11.因此数列xn的通项公式为xn2n1.(2)过P1,P2,Pn1向x轴作垂线,垂足分别为Q1,Q2,Qn1.由(1)得xn1xn2n2n12n1,记梯形PnPn1Qn1Qn的面积为bn,由题意得bn2n1(2n1)2n2,所以Tnb1b2bn321520721(2n1)2n3(2n1)2n2,则2Tn320521722(2n1)2n2(2n1)
9、2n1,由,得Tn321(2222n1)(2n1)2n1(2n1)2n1.所以Tn.5.(2019盘锦模拟)若正项数列an的前n项和为Sn,首项a11,点P(,Sn1)在曲线y(x1)2上.(1)求数列an的通项公式an;(2)设bn,Tn表示数列bn的前n项和,若Tna恒成立,求Tn及实数a的取值范围.解(1)由Sn1(1)2,得1,所以数列是以为首项,1为公差的等差数列,所以(n1)1,即Snn2,由公式an得an所以an2n1.(2)因为bn,所以Tnb1b2bn,显然Tn是关于n的增函数,所以Tn有最小值(Tn)minT1.由于Tna恒成立,所以a,于是a的取值范围是.6.已知各项均不相等的等差数列an的前三项和为9,且a1,a3,a7恰为等比数列bn的前三项.(1)分别求数列an,bn的前n项和Sn,Tn;(2)记数列anbn的前n项和为Kn,设cn,求证:cn1cn(nN).(1)解设数列an的公差为d,则解得或(舍去),所以ann1,Sn.又b1a12,b2a34,所以bn2n,Tn2n12.(2)证明因为anbn(n1)2n,所以Kn221322(n1)2n,所以2Kn222323n2n(n1)2n1,得Kn22122232n(n1)2n1,所以Knn2n1.则cn,cn1cn0,所以cn1cn(nN).公众号码:王校长资源站