1、4.数学思考第1课时 数学思考(1)教学内容找规律。教学目标使学生通过画图,由简到繁,发现规律,总结规律,进一步巩固、发展学生找规律的能力,体会找规律对解决问题的重要性。教 学重点难点学生通过画图,由简到繁,发现规律,总结规律。教学准备多媒体课件。教学过程【复习导入】1.课件出示一组题,比一比,谁最能干。(1)根据数的变化规律填数。13、11、9、( )、( )、( )。(2)根据下面图形的排列规律,接着画出4个。(3)2、4、8、16、( )、( )(课件说明:先出现16、( )、( ),让学生找不到或者不容易找到答案。体会必须要找到规律。再出现2、4、8、16,再次让学生体会要从给出的条件
2、出发找到规律)。2.揭示课题:教师:这就是我们的一种数学思考方法,难的问题解决不了或不容易解决,我们就从简单问题入手。通过比较、分析,找到规律,然后再解决问题。下面我们就利用这一策略来解决问题。【探索规律】1.游戏引入:表扬刚才发言比较好的同学,与他们握手,然后让学生思考,刚才老师和学生一共握了几次?再选一位同学与其余同学握手,再问一共握了几次,依次让学生体会到有规律但不容易一下子说出答案,那么全班呢?(临时收集人数)这需要我们从人数最少的时候开始找规律,如果我们把每个人看成一个点,握手看成连线。那么我们就可以将握手问题看成是连线问题。2.教学例1。6个点可以连成多少条线段?8个点呢?(1)
3、独立思考,发现规律。给时间让学生动手操作,老师边巡视,观察学生在做什么,怎么操作的,边询问学生是怎么想的。(预设:有的同学会很快找到规律并得到结果;有的同学能找到答案,但说不清楚规律;有的同学不能找到规律,或不能很快找到,但是可以一直画到6个点甚至8个点;还有可能能连但有遗漏;学生可能很容易发现,用一个点先和其他所有点连接的方法,而其他的方法不一定能想到。)针对学生的情况,抽一两个人说说自己的发现。其他同学听,培养学生的倾听习惯。困惑如果发表格,那就限制了学生的思维。如果不发,那怎么揭示这个规律?(每人发一张白纸,这样难度拔高了,但可以试一试。)(2)动手操作,(发现)验证规律。已经发现的属于
4、验证,没有发现的,可以依托这一环节去发现。方案一:用一个点分别和其他点连接,6个点的时候,分别是5+4+3+2+1=15。方案二:连线填表。学生同桌之间相互合作,也可以让学生自己选择,是合作还是独立做。如果发一张白纸,就让学生自己设计,有可能就是这样的,也有可能出现其它结果。看看图上的数据和自己的操作,思考一下,你会有什么发现?(课件说明:这张表格用课件展示,但是不完整,在课堂上边听学生回答边填写)交流汇报。指名到投影上汇报,教师板书。从2个点开始。板书:2个点共连1条学生:3个点共连3条提问:这3条线段是怎么得到的?(增加一个点,这个点可以和前面已有的每个点都连成一条线段。前面2个点,就增加
5、2条,所以3条。)板书:3个点共连1+2=3(条)学生:4个点共连6条线段。提问:这6条线段又是怎么得到的?(增加一个点,这个点就可以和前面已有的每个点都连成一条线段。前面3个点,就增加3条,所以6条。)板书:4个点共连1+2+3=6(条)追问:观察算式,6条是从1开始的几个什么样的数相加?学生:从1开始的3个连续自然数相加。(板书)提问:你能快速说出5个点可以连成几条线段吗?是从1开始的几个连续自然数相加?板书:5个点共连1+2+3+4=10(条)(从1开始的4个连续自然数相加)提问:6个、8个、12个、20个点能连成多少条线段?你能自己列出算式并算出结果吗?学生列式后回答:6个点共连1+2
6、+3+4+5=15(条)(从1开始的5个连续自然数相加)8个点连成线段的条数:1+2+3+4+5+6+7=28(条)(从1开始的7个连续自然数相加)12个点连成线段的条数:1+2+3+4+5+6+7+8+9+10+11=66(条)(从1开始的11个连续自然数相加)20个点连成线段的条数:1+2+3+19=190(条)(从1开始的19个连续自然数相加)总结规律:提问:如果有n个点,你能说出可以连成多少条线段吗?你会用算式表示吗?学生讨论后,得出规律。教师小结:本题的规律也可以用字母表示,n个点可连线段的总条数就等于从1开始的(n-1)个连续自然数相加的和,也就是连续自然数的个数比点数少1。用算式
7、表示为:1+2+3+4+5+6+7+(n-1)方案三:继续思考,你还有什么方法解决问题吗?学生汇报 两个点能连1条。 一个点能引2条,那么有3个点就共有23,但是每条线段分别重复了一次,所以,实际上有232。四个点呢?谁能说说怎么连接?四个点、五个点同理。根据规律,你知道15个点能连成多少条线段?第七个问题,再思考,如果有 n个点呢?(给学生思考的空间,实在说不出来了,再提示)有n (n-1)2解读关系式:点数(点数-1)2【指导阅读】计算全班每个人都与同学握手,一共要握手多少次?生答:人数(人数-1)2。【课堂小结】通过这节课的学习,你有什么收获?学生畅谈学习所得。【课后作业】完成练习册中本
8、课时的练习。教学反思第2课时 数学思考(2)教学内容逻辑推理。教学目标1.学生根据已知条件通过列表等直观手段进行推理、判断,得出结论。2.初步培养学生有序地、全面地思考问题的意识。教 学重点难点根据已知条件,运用排除法判断得出结论。教学准备多媒体课件。教学过程【情境导入】教师:同学们喜欢看警察叔叔破案的影片吗?警察叔叔根据一些线索进行推理,最终将犯罪分子绳之以法。你们想不想进行推理判断得出正确的结论呢?1.课件出示简单的推理问题,学生回答。(1)小红和小明分别拿着语文书和数学书,小红说:“我拿的不是数学书。”那么,他们两人究竟各拿什么书?学生:根据小红说的话可知她拿的是语文书,小明拿的是数学书
9、。(2)小红、小丽、小刚分别拿着语文书、数学书、社会书。小红说:“我拿的是语文书。”小刚说:“我拿的不是数学书。”那么小丽拿的什么书?学生:根据小红和小刚说的话可知小刚拿的是社会书,小丽拿的是数学书。2.小结:同学们对简单的推理问题分析得有理有据,得出了正确的结论。这节课,我们学习较复杂的推理问题。希望同学们积极开动脑筋,作出准确的推理判断。【复习讲授】课件出示例2:六年级有三个班,每班有2个班长。开班长会时,每次每班只要一个班长参加。第一次到会的有A、B、C;第二次有B、D、E;第三次有A、E、F。请问哪两位班长是同班的?1.组织学生读题,理解题意。2.指名学生说一说题目的意思是什么,并进行
10、集体评议。使学生明确:这里的A、B、C、D、E、F分别表示3个班的6位班长,每班有2个班长,每次开会,每班只有1位班长参加。3.教师:第一次到会的有A、B、C,说明A不可能和谁同班?组织学生议一议,并进行交流。指名学生说一说,并进行集体评议。使学生明确:A不可能和B、C同班。教师:第一次到会的有A、B、C,说明A只能和谁同班?组织学生议一议,并相互交流。指名学生说一说,并进行集体评议。使学生明确:A只可能和D、E、F同班。4.教师:第二次有B、D、E,第三次有A、E、F,这些条件又说明了什么?组织学生互相交流,讨论。指名学生汇报,并集体评议。5.教师:看了这些条件你有何感想?有没有什么办法,能
11、使这么复杂的条件一目了然呢?组织学生互相讨论,互相交流。指名学生汇报,引导学生用列表的方法试一试。课件展示问题:用数字“1”表示到会,用数字“0”表示没到会,填写下表:组织学生独立思考,独立填写。组织学生互相交流,指名学生汇报。(投影仪)根据学生的汇报板书:教师:请问哪两位班长是同班的?指名学生答一答,并进行集体评议。(板书:A、D同班,B、F同班,C、E同班)6.教师:如果不用列表,能直接根据条件推理吗?组织学生议一议,互相交流。指名学生说一说,并进行集体评议。使学生明确:上面的推理过程用了“排除法”。【课堂作业】教材第103页练习二十二第6、7题。【课堂小结】通过这节课的学习,你有什么收获?【课后作业】完成练习册中本课时的练习。教学反思