1、注意事项:1.本试卷分第卷(选择题)和第卷(非选择题)两部分.第卷1至3页,第卷3至5页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第卷一.选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知在复平面内对应的点在第四象限,则实数的取值范围是( )(A) (B) (C) (D)(2)已知集合,则( )(A) (B) (C) (D)(3)已知向量,且,则( )(A)8 (B)6 (C)6 (D)8(4)圆的圆心到直线的距离为1,则a=( )(
2、A) (B) (C) (D)2(5)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )(A)24 (B)18 (C)12 (D)9(6)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )(A) (B) (C) (D)(7)若将函数的图像向左平移个单位长度,则平移后图象的对称轴为( )(A) (B) (C) (D)(8)中国古代有计算多项式值的秦九韶算法,下图是实现该算法的程序框图.执行该程序框图,若输入的,依次输入的为2,2,5,则输出的( )(A)7 (B)12 (C)17 (D)34(
3、9)若,则( )(A) (B) (C) (D)(10)从区间随机抽取个数,,构成n个数对,其中两数的平方和小于1的数对共有个,则用随机模拟的方法得到的圆周率的近似值为(A) (B) (C) (D)(11)已知是双曲线的左,右焦点,点在上,与轴垂直,,则的离心率为( )(A) (B) (C) (D)2(12)已知函数满足,若函数与图像的交点为则( )(A)0 (B) (C) (D)第卷本卷包括必考题和选考题两部分.第13 21题为必考题,每个试题考生都必须作答.第2224题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13) 的内角的对边分别为,若,则 (14) 是两个平面
4、,是两条直线,有下列四个命题:(1)如果,那么.(2)如果,那么.(3)如果,那么.(4)如果,那么与所成的角和与所成的角相等.其中正确的命题有 (填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是 (16)若直线是曲线的切线,也是曲线的切线,则 三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本题满分12分)为等差数列的前项和,且记,其中表示不超过的最大整数,
5、如()求;()求数列的前1 000项和18.(本题满分12分)某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人的本年度的保费与其上年度的出险次数的关联如下:上年度出险次数012345保费0.851.251.51.752设该险种一续保人一年内出险次数与相应概率如下:一年内出险次数012345概率0.300.150.200.200.100.05()求一续保人本年度的保费高于基本保费的概率;()若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率;()求续保人本年度的平均保费与基本保费的比值19.(本小题满分12分)如图,菱形的对角线与交于点,点分别在上,交
6、于点将沿折到位置,()证明:平面;()求二面角的正弦值来源:Z#xx#k.Com来源:学,科,网20.(本小题满分12分)已知椭圆的焦点在轴上,是的左顶点,斜率为的直线交于两点,点在上,()当时,求的面积;()当时,求的取值范围(21)(本小题满分12分)()讨论函数的单调性,并证明当时,; ()证明:当时,函数有最小值.设的最小值为,求函数的值域请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分10分)选修4-1:几何证明选讲如图,在正方形中,分别在边上(不与端点重合),且,过点作,垂足为() 证明:四点共圆;()若,为的中点,求四边形的面积(23)(本小题满分10分)选修44:坐标系与参数方程在直角坐标系中,圆的方程为()以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程;()直线的参数方程是(为参数), 与交于两点,求的斜率(24)(本小题满分10分)选修45:不等式选讲已知函数,为不等式的解集()求;()证明:当时,