1、第4节随机事件的概率最新考纲1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别;2.了解两个互斥事件的概率加法公式.知 识 梳 理1.概率与频率(1)频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)为事件A出现的频率.(2)概率:在相同的条件下,大量重复进行同一试验时,随机事件A发生的频率会在某个常数附近摆动,即随机事件A发生的频率具有稳定性.这时我们把这个常数叫作随机事件A的概率,记作P(A).2.事件的关系与运算定义符号表示包含关系如果事件A发生,则事件B一定发生,这时
2、称事件B包含事件A(或称事件A包含于事件B)BA(或AB)相等关系若BA且ABAB和事件(并事件)若某事件发生当且仅当事件A发生或事件B发生,称此事件为事件A与事件B的和事件(或并事件)A+B(或AB)交事件(积事件)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)AB(或AB)互斥事件若AB为不可能事件,则称事件A与事件B互斥AB对立事件若AB为不可能事件,A+B为必然事件,那么称事件A与事件B互为对立事件ABP(A+B)13.概率的几个基本性质(1)概率的取值范围:0P(A)1.(2)必然事件的概率P(E)1.(3)不可能事件的概率P(F)0.(4
3、)互斥事件概率的加法公式如果事件A与事件B互斥,则P(A+B)P(A)P(B).若事件B与事件A互为对立事件,则P(A)1P(B).微点提醒1.从集合的角度理解互斥事件和对立事件(1)几个事件彼此互斥,是指由各个事件所含的结果组成的集合的交集为空集.(2)事件A的对立事件所含的结果组成的集合,是全集中由事件A所含的结果组成的集合的补集.2.概率加法公式的推广当一个事件包含多个结果且各个结果彼此互斥时, 要用到概率加法公式的推广,即P(A1+A2+An)P(A1)P(A2)P(An).基 础 自 测1.判断下列结论正误(在括号内打“”或“”)(1)事件发生的频率与概率是相同的.()(2)在大量的
4、重复实验中,概率是频率的稳定值.()(3)若随机事件A发生的概率为P(A),则0P(A)1.()(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.()答案(1)(2)(3)(4)2.(必修3P157A9改编)容量为20的样本数据,分组后的频数如下表:分组10,20)20,30)30,40)40,50)50,60)60,70)频数234542则样本数据落在区间10,40)的频率为()A.0.35 B.0.45 C.0.55 D.0.65解析由表知10,40)的频数为2349,所以样本数据落在区间10,40)的频率为0.45.答案B3.(必修3P139例3改编)某
5、小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,事件“至少有一名女生”与事件“全是男生”()A.是互斥事件,不是对立事件B.是对立事件,不是互斥事件C.既是互斥事件,也是对立事件D.既不是互斥事件也不是对立事件解析“至少有一名女生”包括“一男一女”和“两名女生”两种情况,这两种情况再加上“全是男生”构成全集,且不能同时发生,故“至少有一名女生”与“全是男生”既是互斥事件,也是对立事件.答案C4.(2019长沙月考)将一枚硬币向上抛掷10次,其中“正面向上恰有5次”是()A.必然事件 B.随机事件C.不可能事件 D.无法确定解析抛掷10次硬币正面向上的次数可能为010,都有可能发生,正
6、面向上5次是随机事件.答案B5.(2018全国卷)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为()A.0.3 B.0.4 C.0.6 D.0.7解析某群体中的成员分为只用现金支付、既用现金支付也用非现金支付、不用现金支付,它们彼此是互斥事件,所以不用现金支付的概率为1(0.150.45)0.4.答案B6.(2018咸阳调研)甲、乙两人下棋,两人下成和棋的概率是,乙获胜的概率是,则乙不输的概率是_.解析乙不输包含两人下成和棋和乙获胜,且它们是互斥事件,所以乙不输的概率为.答案考点一随机事件的关系【例1】 (1)把红、黄、蓝、白4
7、张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件 B.是不可能事件C.是互斥但不对立事件 D.不是互斥事件(2)设条件甲:“事件A与事件B是对立事件”,结论乙:“概率满足P(A)P(B)1”,则甲是乙的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析(1)显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.(2)若事件A与事件B是对立事件,则A+B为必然事件,再由概率的加法公式得P(A)P(B)1;投掷一枚硬币3次,满足P(A)P(B)1,
8、但A,B不一定是对立事件,如:事件A:“至少出现一次正面”,事件B:“出现3次正面”,则P(A),P(B),满足P(A)P(B)1,但A,B不是对立事件.答案(1)C(2)A规律方法1.准确把握互斥事件与对立事件的概念:(1)互斥事件是不可能同时发生的事件,但也可以同时不发生;(2)对立事件是特殊的互斥事件,特殊在对立的两个事件不可能都不发生,即有且仅有一个发生.2.判别互斥事件、对立事件一般用定义判断,不可能同时发生的两个事件为互斥事件;两个事件,若有且仅有一个发生,则这两个事件为对立事件,对立事件一定是互斥事件.【训练1】 从1,2,3,4,5这五个数中任取两个数,其中:恰有一个是偶数和恰
9、有一个是奇数;至少有一个是奇数和两个都是奇数;至少有一个是奇数和两个都是偶数;至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A. B. C. D.解析从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数.其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数构成对立事件.又中的事件可以同时发生,不是对立事件.答案C考点二随机事件的频率与概率【例2】 (2017全国卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当
10、天最高气温(单位:)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40天数216362574以最高气温位于各区间的频率估计最高气温位于该区间的概率.(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.解(
11、1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表中数据可知,最高气温低于25的频率为0.6.所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温低于20,则Y2006(450200)24504100;若最高气温位于区间20,25),则Y3006(450300)24504300;若最高气温不低于25,则Y450(64)900,所以,利润Y的所有可能值为100,300,900.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为0.8.因此Y大于零的概率的估计值为0.8.规律方法1.概率与频
12、率的关系频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,有时也用频率来作为随机事件概率的估计值.2.随机事件概率的求法利用概率的统计定义求事件的概率,即通过大量的重复试验,事件发生的频率会逐步趋近于某一个常数,这个常数就是概率.提醒概率的定义是求一个事件概率的基本方法.【训练2】 如图,A地到火车站共有两条路径L1和L2,现随机抽取100位从A地到达火车站的人进行调查,调查结果如下:所用时间(分钟)10202030304040505060选择L1的人数612181212选择L2的人数0416164(1)试估计40分钟内不能赶
13、到火车站的概率;(2)分别求通过路径L1和L2所用时间落在上表中各时间段内的频率;(3)现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站,为了尽最大可能在允许的时间内赶到火车站,试通过计算说明,他们应如何选择各自的路径.解(1)由已知共调查了100人,其中40分钟内不能赶到火车站的有121216444(人),用频率估计相应的概率为p0.44.(2)选择L1的有60人,选择L2的有40人,故由调查结果得频率为所用时间(分钟)10202030304040505060L1的频率0.10.20.30.20.2L2的频率00.10.40.40.1(3)设A1,A2分别表示甲选择L1和L2时,在40
14、分钟内赶到火车站;B1,B2分别表示乙选择L1和L2时,在50分钟内赶到火车站.由(2)知P(A1)0.10.20.30.6,P(A2)00.10.40.5,P(A1)P(A2),甲应选择L1.同理,P(B1)0.10.20.30.20.8,P(B2)00.10.40.40.9,P(B1)P(B2),乙应选择L2.考点三互斥事件与对立事件的概率【例3】 经统计,在某储蓄所一个营业窗口等候的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)(一题多解)至少3人排队等候的概率.解记“无人排队等候”为事件A,“1人
15、排队等候”为事件B,“2人排队等候”为事件C,“3人排队等候”为事件D,“4人排队等候”为事件E,“5人及5人以上排队等候”为事件F,则事件A,B,C,D,E,F彼此互斥.(1)记“至多2人排队等候”为事件G,则GA+B+C,所以P(G)P(A+B+C)P(A)P(B)P(C)0.10.160.30.56.(2)法一记“至少3人排队等候”为事件H,则HD+E+F,所以P(H)P(D+E+F)P(D)P(E)P(F)0.30.10.040.44.法二记“至少3人排队等候”为事件H,则其对立事件为事件G,所以P(H)1P(G)0.44.规律方法1.求解本题的关键是正确判断各事件之间的关系,以及把所
16、求事件用已知概率的事件表示出来.2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)1P()求解.当题目涉及“至多”、“至少”型问题,多考虑间接法.【训练3】 (一题多解)一盒中装有12个球,其中5个红球,4个黑球,2个白球,1个绿球.从中随机取出1球,求:(1)取出1球是红球或黑球的概率;(2)取出1球是红球或黑球或白球的概率.解法一(利用互斥事件求概率)记事件A1任取1球为红球,A2任取1球为黑球,A3任取1球为白球,A4任取1球为绿球,则P(A1),P(A2),P(A3),P(
17、A4),根据题意知,事件A1,A2,A3,A4彼此互斥,由互斥事件的概率公式,得(1)取出1球是红球或黑球的概率为P(A1A2)P(A1)P(A2).(2)取出1球是红球或黑球或白球的概率为P(A1A2A3)P(A1)P(A2)P(A3).法二(利用对立事件求概率)(1)由法一知,取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1A2的对立事件为A3A4,所以取出1球为红球或黑球的概率为P(A1A2)1P(A3A4)1P(A3)P(A4)1.(2)因为A1A2A3的对立事件为A4,所以P(A1A2A3)1P(A4)1.思维升华1.对于给定的随机事件A,由于事件A发生的频率fn(A)随
18、着试验次数的增加稳定于概率P(A),因此可以用频率fn(A)来估计概率P(A).2.对立事件不仅两个事件不能同时发生,而且二者必有一个发生.3.求复杂的互斥事件的概率一般有两种方法:(1)直接法:将所求事件的概率分解为一些彼此互斥的事件的概率的和,运用互斥事件的概率加法公式计算.(2)间接法:先求此事件的对立事件的概率,再用公式P(A)1P(),即运用逆向思维(正难则反).易错防范1.易将概率与频率混淆,频率随着试验次数变化而变化,而概率是一个常数.2.正确认识互斥事件与对立事件的关系,对立事件是互斥事件,是互斥事件中的特殊情况,但互斥事件不一定是对立事件,“互斥”是“对立”的必要不充分条件.
19、3.需准确理解题意,特别留心“至多”“至少”“不少于”等语句的含义.基础巩固题组(建议用时:40分钟)一、选择题1.下列说法正确的是()A.甲、乙二人比赛,甲胜的概率为,则比赛5场,甲胜3场B.某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C.随机试验的频率与概率相等D.天气预报中,预报明天降水概率为90%,是指降水的可能性是90%解析由概率的意义知D正确.答案D2.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”是()A.互斥但非对立事件 B.对立事件C.相互独立事件 D.以上都
20、不对解析由于每人一个方向,事件“甲向南”与事件“乙向南”不能同时发生,但能同时不发生,故是互斥事件,但不是对立事件.答案A3.设事件A,B,已知P(A),P(B),P(A+B),则A,B之间的关系一定为()A.两个任意事件 B.互斥事件C.非互斥事件 D.对立事件解析因为P(A)P(B)P(A+B),所以A,B之间的关系一定为互斥事件.答案B4.(2019九江检测)某产品分甲、乙、丙三级,其中乙、丙两级均属次品,在正常生产情况下,出现乙级品和丙级品的概率分别是5%和3%,则抽检一件是正品(甲级)的概率为()A.0.95 B.0.97 C.0.92 D.0.08解析记“抽检的产品是甲级品”为事件
21、A,是“乙级品”为事件B,是“丙级品”为事件C,这三个事件彼此互斥,因而所求概率为P(A)1P(B)P(C)15%3%92%0.92.答案C5.围棋盒子中有多粒黑子和白子,已知从中取出2粒都是黑子的概率是,都是白子的概率是.则从中任意取出2粒恰好是同一色的概率是()A. B. C. D.1解析设“从中取出2粒都是黑子”为事件A,“从中取出2粒都是白子”为事件B,“任意取出2粒恰好是同一色”为事件C,则CA+B,且事件A与B互斥.由于P(A),P(B).所以P(C)P(A)P(B).答案C二、填空题6.传说古时候有一个农夫正在田间干活,忽然发现一只兔子撞死在地头的木桩上,他喜出望外,于是拾起兔子
22、回家了,第二天他就蹲在木桩旁守候,就这样日复一日,年复一年,但再也没有等着被木桩碰死的兔子,原因是_.答案兔子碰死在木桩上是随机事件,可能不发生7.(2019济南模拟)从一箱产品中随机地抽取一件,设事件A抽到一等品,事件B抽到二等品,事件C抽到三等品,且已知P(A)0.65,P(B)0.2,P(C)0.1,则事件“抽到的产品不是一等品”的概率为_.解析事件A抽到一等品,且P(A)0.65,事件“抽到的产品不是一等品”的概率为p1P(A)10.650.35.答案0.358.(2019北京东城区调研)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数012345概率0
23、.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是_.解析由表格知,至少有2人排队的概率p0.30.30.10.040.74.答案0.74三、解答题9.黄种人人群中各种血型的人数所占的比例见下表:血型ABABO该血型的人数所占的比例28%29%8%35%已知同种血型的人可以互相输血,O型血的人可以给任一种血型的人输血,任何人的血都可以输给AB型血的人,其他不同血型的人不能互相输血.小明是B型血,若他因病需要输血,问:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)任找一人,其血型为A,B,AB,O型血分
24、别记为事件A,B,C,D,它们是互斥的.由已知,有P(A)0.28,P(B)0.29,P(C)0.08,P(D)0.35.因为B,O型血可以输给B型血的人,故“任找一个人,其血可以输给小明”为事件B+D,根据概率加法公式,得P(B+D)P(B)P(D)0.290.350.64.(2)由于A,AB型血不能输给B型血的人,故“任找一个人,其血不能输给小明”为事件A+C,且P(A+C)P(A)P(C)0.280.080.36.10.(2016全国卷)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数012345保费0.8
25、5aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数012345频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解(1)事件A发生当且仅当一年内出险次数小于2,由所给数据知,一年内出险次数小于2的频率为0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4,由所给数据知,一年内出险次数大于1且小于4的
26、频率为0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a0.30a0.251.25a0.151.5a0.151.75a0.102a0.051.192 5a.因此,续保人本年度平均保费的估计值为1.192 5a.能力提升题组(建议用时:20分钟)11.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点数”,若表示B的对立事件,则一次试验中,事件A+发生的概率为()A. B. C. D.解析掷一个骰子的试验有6种可能结果.依题
27、意P(A),P(B),P()1P(B)1.表示“出现5点或6点”的事件,因此事件A与互斥,从而P(A+)P(A)P().答案C12.如图所示的茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是()A. B. C. D.解析设被污损的数字为x,则甲(8889909192)90,乙(8383879990x),若甲乙,则x8.若甲乙,则x可以为0,1,2,3,4,5,6,7,故p.答案C13.某城市2018年的空气质量状况如表所示:污染指数T3060100110130140概率p其中污染指数T50时,空气质量为优;50T100时,空气质量为良,
28、100T150时,空气质量为轻微污染,则该城市2018年空气质量达到良或优的概率为_.解析由题意可知2018年空气质量达到良或优的概率为p.答案14.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形的顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获量Y(单位:kg)与它的“相近”作物株数X之间的关系如表所示:X1234Y51484542这里,两株作物“相近”是指它们之间的直线距离不超过1米.(1)完成下表,并求所种作物的平均年收获量;Y51484542频数4(2)在所种作物中随机选取一株,求它的年收获量至少为48 kg的概率.解(1)所种作物的总株数为1234515,其中“相近”作物株数为1的作物有2株,“相近”作物株数为2的作物有4株,“相近”作物株数为3的作物有6株,“相近”作物株数为4的作物有3株,列表如下:Y51484542频数2463所种作物的平均年收获量为46.(2)由(1)知,P(Y51),P(Y48).故在所种作物中随机选取一株,它的年收获量至少为48 kg的概率为P(Y48)P(Y51)P(Y48).