1、几何的初步知识一、线和角(1)线* 直线直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。* 射线射线只有一个端点;长度无限。* 线段线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。* 平行线在同一平面内,不相交的两条直线叫做平行线。两条平行线之间的垂线长度都相等。* 垂线两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。(2)角(1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。(2)角的分类锐角:小于 90的角叫
2、做锐角。直角:等于 90的角叫做直角。钝角:大于 90而小于 180的角叫做钝角。平角:角的两边成一条直线,这时所组成的角叫做平角。平角 180。周角:角的一边旋转一周,与另一边重合。周角是 360。二、平面图形1 长方形(1)特征:对边相等,4 个角都是直角的四边形。有两条对称轴。(2)计算公式c=2(a+b) s=ab 2 正方形(1)特征:四条边都相等,四个角都是直角的四边形。有 4 条对称轴。(2)计算公式c=4a s=a - 1 - 3 三角形(1)特征:由三条线段围成的图形。内角和是 180 度。三角形具有稳定性。三角形有三条高。(2)计算公式s=ah/2 (3)分类按角分锐角三角
3、形:三个角都是锐角。直角三角形:有一个角是直角。等腰三角形的两个锐角各为 45 度,它有一条对称轴。钝角三角形:有一个角是钝角。按边分不等边三角形:三条边长度不相等。等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。等边三角形:三条边长度都相等;三个内角都是 60 度;有三条对称轴。4 平行四边形(1)特征两组对边分别平行的四边形。相对的边平行且相等。对角相等,相邻的两个角的度数之和为 180 度。平行四边形容易变形。(2)计算公式s=ah 5 梯形(1)特征只有一组对边平行的四边形。中位线等于上下底和的一半。等腰梯形有一条对称轴。(2)公式s=(a+b)h/2=mh 6 圆(1)圆的
4、认识平面上的一种曲线图形。圆中心的一点叫做圆心。一般用字母 o 表示。半径:连接圆心和圆上任意一点的线段叫做半径。一般用 r 表示。在同一个圆里,有无数条半径,每条半径的长度都相等。通过圆心并且两端都在圆上的线段叫做直径。一般用 d 表示。同一个圆里有无数条直径,所有的直径都相等。同一个圆里,直径等于两个半径的长度,即 d=2r。圆的大小由半径决定。圆有无数条对称轴。- 2 - (2)圆的画法把圆规的两脚分开,定好两脚间的距离(即半径);把有针尖的一只脚固定在一点(即圆心)上;把装有铅笔尖的一只脚旋转一周,就画出一个圆。(3)圆的周长围成圆的曲线的长叫做圆的周长。把圆的周长和直径的比值叫做圆周
5、率。用字母表示。(4)圆的面积圆所占平面的大小叫做圆的面积。(5)计算公式d=2r r=d/2 c=d c=2r s=r7 扇形(1)扇形的认识一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。圆上 AB 两点之间的部分叫做弧,读作“弧 AB”。顶点在圆心的角叫做圆心角。在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关。扇形有一条对称轴。(2) 计算公式s=nr/360 8 环形 (1) 特征由两个半径不相等的同心圆相减而成,有无数条对称轴。(2) 计算公式s=(R-r)9 轴对称图形 (1) 特征如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形就是轴对称图形。折痕所在的这条直线叫做对称轴。正方形有 4 条对称轴,长方形有 2 条对称轴。等腰三角形有 2 条对称轴,等边三角形有 3 条对称轴。等腰梯形有一条对称轴,圆有无数条对称轴。菱形有 4 条对称轴,扇形有一条对称轴。三、立体图形- 3 - (一)长方体1 特征六个面都是长方形(有时有两个相对的面是正方形)。相对的面面积相等,12 条棱相对的 4 条棱长度相等。有 8 个顶点。相交于一个顶点的三条棱的长度分别叫做长、宽、高。两个面相交的边叫做棱。三条棱相交的点叫做顶点。把长方体放在桌面上,最多只能看到三个面。长方体或者正方体 6 个面的总面积,叫做它的表面积。