1、专题三三角函数专题三三角函数3.13.1三角函数的图象与性质三角函数的图象与性质考情分析-3-高频考点-4-命题热点一命题热点二命题热点三命题热点四三角函数的性质【思考1】求三角函数周期、单调区间的一般思路?【思考2】求某区间上三角函数最值的一般思路?例1已知函数f(x)=2 sin(-x)cos x-1+2cos2x,其中xR,则下列结论正确的是()答案解析解析关闭 答案解析关闭高频考点-5-命题热点一命题热点二命题热点三命题热点四题后反思1.求三角函数的周期、单调区间、最值及判断三角函数的奇偶性,往往是在其定义域内,先对三角函数解析式进行恒等变形,把三角函数式化简成y=Asin(x+)的形
2、式,再求解.求y=Asin(x+)的单调区间时,只需把(x+)看作一个整体代入y=sin x的相应单调区间内即可,注意要先把化为正数.2.对于形如y=asin x+bcos x型的三角函数,要通过引入辅助角化为 的形式来求解.高频考点-6-命题热点一命题热点二命题热点三命题热点四对点训练1(2018全国,文8)已知函数f(x)=2cos2x-sin2x+2,则()A.f(x)的最小正周期为,最大值为3B.f(x)的最小正周期为,最大值为4C.f(x)的最小正周期为2,最大值为3D.f(x)的最小正周期为2,最大值为4B 高频考点-7-命题热点一命题热点二命题热点三命题热点四三角函数图象的变换【
3、思考】对三角函数y=Asin(x+)的图象进行了平移或伸缩变换后,其对应的解析式发生了怎样的变化?高频考点-8-命题热点一命题热点二命题热点三命题热点四例2函数y=sin x-cos x的图象可由函数y=2sin x的图象至少向右平移个单位长度得到.高频考点-9-命题热点一命题热点二命题热点三命题热点四题后反思1.平移变换理论(1)平移变换:沿x轴平移,按“左加右减”法则;沿y轴平移,按“上加下减”法则.(2)伸缩变换:沿x轴伸缩时,横坐标x伸长(01)为原来的 倍(纵坐标y不变);沿y轴伸缩时,纵坐标y伸长(A1)或缩短(0A0,0)的最值问题,常用的方法是:首先要求出(x+)的取值范围,然
4、后将(x+)看作一个整体t,利用y=Asin t的单调性求解.另外借助函数y=Asin(x+)的图象求最值也是常用方法.高频考点-17-命题热点一命题热点二命题热点三命题热点四对点训练4已知函数f(x)=2sin xcos x+cos 2x(0)的最小正周期为.(1)求的值;(2)求f(x)的单调递增区间.高频考点-18-命题热点一命题热点二命题热点三命题热点四-19-规律总结拓展演练1.求三角函数的周期、单调区间及判断其奇偶性的问题,常通过三角恒等变换将三角函数化为只含一个函数名称且角度唯一、最高次数为一次的形式.2.由函数y=sin x的图象变换得到y=Asin(x+)(A0,0)的图象有
5、两种方法,一是先平移再伸缩,二是先伸缩再平移,要弄清楚是平移哪个函数的图象,得到哪个函数的图象;平移前后两个函数的名称是否一致,若不一致,应先利用诱导公式化为同名函数;当由y=Asin x的图象得到y=Asin(x+)(0)的图象时,需平移的单位数应为 ,而不是|.-20-规律总结拓展演练4.对于函数y=Asin(x+),其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此在判断直线x=x0或点(x0,0)是否是函数的对称轴或对称中心时,可通过检验f(x0)的值进行判断.-21-规律总结拓展演练C-22-规律总结拓展演练C-23-规律总结拓展演练A-24-规律总结拓展演
6、练4.函数f(x)=2cos x+sin x的最大值为.-25-规律总结拓展演练5.定义在区间0,3上的函数y=sin 2x的图象与y=cos x的图象的交点个数是.答案 7 编后语 听课对同学们的学习有着非常重要的作用。课听得好好,直接关系到大家最终的学习成绩。如何听好课,同学们可以参考如下建议:一、听要点。一般来说,一节课的要点就是老师们在备课中准备的讲课大纲。许多老师在讲课正式开始之前会告诉大家,同学们对此要格外注意。例如在学习物理课“力的三要素”这一节时,老师会先列出力的三要素大小、方向、作用点。这就是一堂课的要点。把这三点认真听好了,这节课就基本掌握了。二、听思路。思路就是我们思考问
7、题的步骤。例如老师在讲解一道数学题时,首先思考应该从什么地方下手,然后在思考用什么方法,通过什么样的过程来进行解答。听课时关键应该弄清楚老师讲解问题的思路。三、听问题。对于自己预习中不懂的内容,上课时要重点把握。在听讲中要特别注意老师和课本中是怎么解释的。如果老师在讲课中一带而过,并没有详细解答,大家要及时地把它们记下来,下课再向老师请教。四、听方法。在课堂上不仅要听老师讲课的结论而且要认真关注老师分析、解决问题的方法。比如上语文课学习汉字,一般都是遵循着“形”、“音”、“义”的研究方向;分析小说,一般都是从人物、环境、情节三个要素入手;写记叙文,则要从时间、地点、人物和事情发生的起因、经过、结果六个方面进行叙述。这些都是语文学习中的一些具体方法。其他的科目也有适用的学习方法,如解数学题时,会用到反正法;换元法;待定系数法;配方法;消元法;因式分解法等,掌握各个科目的方法是大家应该学习的核心所在。优等生经验谈:听课时应注意学习老师解决问题的思考方法。同学们如果理解了老师的思路和过程,那么后面的结论自然就出现了,学习起来才能够举一反三,事半功倍。2022-9-28最新中小学教学课件262022-9-28最新中小学教学课件27谢谢欣赏!