1、2016年普通高等学校招生全国统一考试(山东卷)理科数学1.(2016山东,理1)若复数z满足2z+z=3-2i,其中i为虚数单位,则z=()A.1+2iB.1-2iC.-1+2iD.-1-2i答案B设z=a+bi(a,bR),则2z+z=3a+bi=3-2i,故a=1,b=-2,则z=1-2i,选B.注意共轭复数的概念.2.(2016山东,理2)设集合A=y|y=2x,xR,B=x|x2-10,B=x|-1x-1,选C.本题涉及求函数值域、解不等式以及集合的运算.3.(2016山东,理3)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围
2、是17.5,30,样本数据分组为17.5,20),20,22.5),22.5,25),25,27.5),27.5,30.根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是()A.56B.60C.120D.140答案D自习时间不少于22.5小时为后三组,其频率和为(0.16+0.08+0.04)2.5=0.7,故人数为2000.7=140,选D.4.(2016山东,理4)若变量x,y满足x+y2,2x-3y9,x0,则x2+y2的最大值是()A.4B.9C.10D.12答案C如图,不等式组表示的可行域是以A(0,-3),B(0,2),C(3,-1)为顶点的三角形区域,x2+y2
3、表示点(x,y)到原点距离的平方,最大值必在顶点处取到,经验证最大值|OC|2=10,故选C.5.(2016山东,理5)一个由半球和四棱锥组成的几何体,其三视图如下图所示.则该几何体的体积为()A.13+23B.13+23C.13+26D.1+26答案C由三视图可知,上面是半径为22的半球,体积为V1=1243223=26,下面是底面积为1,高为1的四棱锥,体积V2=1311=13,故选C.6.(2016山东,理6)已知直线a,b分别在两个不同的平面,内.则“直线a和直线b相交”是“平面和平面相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案A若直线a与直
4、线b相交,则,一定相交,若,相交,则a,b可能相交,也可能平行或异面,故选A.7.(2016山东,理7)函数f(x)=(3sin x+cos x)(3cos x-sin x)的最小正周期是()A.2B.C.32D.2答案Bf(x)=2sinx+62cosx+6=2sin2x+3,故最小正周期T=22=,故选B.8.(2016山东,理8)已知非零向量m,n满足4|m|=3|n|,cos=13.若n(tm+n),则实数t的值为()A.4B.-4C.94D.-94答案B由4|m|=3|n|,可设|m|=3k,|n|=4k(k0),又n(tm+n),所以n(tm+n)=ntm+nn=t|m|n|cos
5、+|n|2=t3k4k13+(4k)2=4tk2+16k2=0.所以t=-4,故选B.9.(2016山东,理9)已知函数f(x)的定义域为R.当x12时,fx+12=fx-12,则f(6)=()A.-2B.-1C.0D.2答案D当x12时,fx+12=fx-12,所以当x12时,函数f(x)是周期为1的周期函数,所以f(6)=f(1),又因为当-1x1时,f(-x)=-f(x),所以f(1)=-f(-1)=-(-1)3-1=2,故选D.本题考查了函数的周期性、奇偶性,利用函数性质灵活变换是解题的关键.10.(2016山东,理10)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切
6、线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是()A.y=sin xB.y=ln xC.y=exD.y=x3答案A当y=sin x时,y=cos x,因为cos 0cos =-1,所以在函数y=sin x图象存在两点x=0,x=使条件成立,故A正确;函数y=ln x,y=ex,y=x3的导数值均非负,不符合题意,故选A.本题实质上是检验函数图象上存在两点的导数值乘积等于-1.11.(2016山东,理11)执行下边的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为.答案3解析第一次循环:a=1,b=8;第二次循环:a=3,b=6;第三次循环:a=6,b=3;满足条件,
7、结束循环,此时,i=3.循环结构抓住结束点是关键.12.(2016山东,理12)若ax2+1x5的展开式中x5的系数是-80,则实数a=.答案-2解析因为Tr+1=C5r(ax2)5-r1xr=C5ra5-rx10-5r2,所以由10-5r2=5,解得r=2.因此C52a5-2=-80,解得a=-2.13.已知双曲线E:x2a2-y2b2=1(a0,b0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是.答案2解析由双曲线和矩形的对称性可知ABx轴,不妨设A点的横坐标为c,则由c2a2-y2b2=1,解得y=b2a.设Ac,b2a,Bc
8、,-b2a,则|AB|=2b2a,|BC|=2c,由2|AB|=3|BC|,c2=a2+b2得离心率e=2或e=-12(舍去),所以离心率为2.把涉及的两个线段的长度表示出来是做题的关键.14.(2016山东,理14)在-1,1上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为.答案34解析直线y=kx与圆(x-5)2+y2=9相交,需要满足圆心到直线的距离小于半径,即d=|5k|1+k23,解得-34km,其中m0.若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是.答案(3,+)解析 x2-2mx+4m=(x-m)2+4m-m2.由
9、题意画出函数图象为右图时才符合,要满足存在实数b,使得关于x的方程f(x)=b有三个不同的根,应4m-m23,即m的取值范围为(3,+).能够准确画出函数的图象是解决本题的关键.16.(2016山东,理16)在ABC中,角A,B,C的对边分别为a,b,c,已知2(tan A+tan B)=tanAcosB+tanBcosA.(1)证明:a+b=2c;(2)求cos C的最小值.解(1)由题意知2sinAcosA+sinBcosB=sinAcosAcosB+sinBcosAcosB,化简得2(sin Acos B+sin Bcos A)=sin A+sin B,即2sin(A+B)=sin A+
10、sin B,因为A+B+C=,所以sin(A+B)=sin(-C)=sin C.从而sin A+sin B=2sin C.由正弦定理得a+b=2c.(2)由(1)知c=a+b2,所以cos C=a2+b2-c22ab=a2+b2-a+b222ab=38ab+ba-1412,当且仅当a=b时,等号成立.故cos C的最小值为12.17.(2016山东,理17)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O的直径,FB是圆台的一条母线.(1)已知G,H分别为EC,FB的中点.求证:GH平面ABC;(2)已知EF=FB=12AC=23,AB=BC,求二面角F-BC-A的余弦值.(1)证
11、明设FC中点为I,连接GI,HI.在CEF中,因为点G是CE的中点,所以GIEF.又EFOB,所以GIOB.在CFB中,因为H是FB的中点,所以HIBC.又HIGI=I,所以平面GHI平面ABC.因为GH平面GHI,所以GH平面ABC.(2)解法一连接OO,则OO平面ABC.又AB=BC,且AC是圆O的直径,所以BOAC.以O为坐标原点,建立如图所示的空间直角坐标系O-xyz.由题意得B(0,23,0),C(-23,0,0).过点F作FM垂直OB于点M,所以FM=FB2-BM2=3,可得F(0,3,3).故BC=(-23,-23,0),BF=(0,-3,3).设m=(x,y,z)是平面BCF的
12、一个法向量.由mBC=0,mBF=0,可得-23x-23y=0,-3y+3z=0.可得平面BCF的一个法向量m=-1,1,33.因为平面ABC的一个法向量n=(0,0,1),所以cos=mn|m|n|=77.所以二面角F-BC-A的余弦值为77.解法二连接OO.过点F作FM垂直OB于点M,则有FMOO.又OO平面ABC,所以FM平面ABC.可得FM=FB2-BM2=3.过点M作MN垂直BC于点N,连接FN.可得FNBC,从而FNM为二面角F-BC-A的平面角.又AB=BC,AC是圆O的直径,所以MN=BMsin 45=62.从而FN=422,可得cosFNM=77.所以二面角F-BC-A的余弦
13、值为77.18.(2016山东,理18)已知数列an的前n项和Sn=3n2+8n,bn是等差数列,且an=bn+bn+1.(1)求数列bn的通项公式;(2)令cn=(an+1)n+1(bn+2)n,求数列cn的前n项和Tn.解(1)由题意知当n2时,an=Sn-Sn-1=6n+5,当n=1时,a1=S1=11,所以an=6n+5.设数列bn的公差为d.由a1=b1+b2,a2=b2+b3,即11=2b1+d,17=2b1+3d,可解得b1=4,d=3.所以bn=3n+1.(2)由(1)知cn=(6n+6)n+1(3n+3)n=3(n+1)2n+1.又Tn=c1+c2+cn,得Tn=3222+3
14、23+(n+1)2n+1,2Tn=3223+324+(n+1)2n+2,两式作差,得-Tn=3222+23+24+2n+1-(n+1)2n+2=34+4(1-2n)1-2-(n+1)2n+2=-3n2n+2,所以Tn=3n2n+2.19.(2016山东,理19)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是34,乙每轮猜对的概率是23;每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”
15、至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望EX.解(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“星队至少猜对3个成语”.由题意,E=ABCD+ABCD+ABCD+ABCD+ABCD.由事件的独立性与互斥性,P(E)=P(ABCD)+P(ABCD)+P(ABCD)+P(ABCD)+P(ABCD)=P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)+P(A)P(B)P(C)P(D)=34233423+21
16、4233423+34133423=23.所以“星队”至少猜对3个成语的概率为23.(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P(X=0)=14131413=1144,P(X=1)=234131413+14231413=10144=572,P(X=2)=34133413+34131423+14233413+14231423=25144,P(X=3)=34231413+14133423=12144=112,P(X=4)=234233413+34231423=60144=512,P(X=6)=34233423=36144=14.可得随机变量X的分布列为X0
17、12346P11445722514411251214所以数学期望EX=01144+1572+225144+3112+4512+614=236.20.(2016山东,理20)已知f(x)=a(x-ln x)+2x-1x2,aR.(1)讨论f(x)的单调性;(2)当a=1时,证明f(x)f(x)+32对于任意的x1,2成立.解(1)f(x)的定义域为(0,+).f(x)=a-ax-2x2+2x3=(ax2-2)(x-1)x3.当a0时,x(0,1)时,f(x)0,f(x)单调递增,x(1,+)时,f(x)0时,f(x)=a(x-1)x3x-2ax+2a.0a1,当x(0,1)或x2a,+时,f(x
18、)0,f(x)单调递增,当x1,2a时,f(x)2时,02a0,f(x)单调递增,当x2a,1时,f(x)0,f(x)单调递减.综上所述,当a0时,f(x)在(0,1)内单调递增,在(1,+)内单调递减;当0a2时,f(x)在0,2a内单调递增,在2a,1内单调递减,在(1,+)内单调递增.(2)由(1)知,a=1时,f(x)-f(x)=x-ln x+2x-1x2-1-1x-2x2+2x3=x-ln x+3x+1x2-2x3-1,x1,2.设g(x)=x-ln x,h(x)=3x+1x2-2x3-1,x1,2.则f(x)-f(x)=g(x)+h(x).由g(x)=x-1x0,可得g(x)g(1
19、)=1,当且仅当x=1时取得等号.又h(x)=-3x2-2x+6x4,设(x)=-3x2-2x+6,则(x)在x1,2单调递减,因为(1)=1,(2)=-10,所以x0(1,2),使得x(1,x0)时,(x)0,x(x0,2)时,(x)g(1)+h(2)=32,即f(x)f(x)+32对于任意的x1,2成立.21.(2016山东,理21)平面直角坐标系xOy中,椭圆C:x2a2+y2b2=1(ab0)的离心率是32,抛物线E:x2=2y的焦点F是C的一个顶点.(1)求椭圆C的方程;(2)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D.直线OD与
20、过P且垂直于x轴的直线交于点M.求证:点M在定直线上;直线l与y轴交于点G,记PFG的面积为S1,PDM的面积为S2,求S1S2的最大值及取得最大值时点P的坐标.解(1)由题意知a2-b2a=32,可得a2=4b2,因为抛物线E的焦点F0,12,所以b=12,a=1.所以椭圆C的方程为x2+4y2=1.(2)设Pm,m22(m0).由x2=2y,可得y=x,所以直线l的斜率为m.因此直线l方程为y-m22=m(x-m),即y=mx-m22.设A(x1,y1),B(x2,y2),D(x0,y0).联立方程x2+4y2=1,y=mx-m22,得(4m2+1)x2-4m3x+m4-1=0.由0,得0
21、m2+5(或0m22+5),(*)且x1+x2=4m34m2+1,因此x0=2m34m2+1.将其代入y=mx-m22,得y0=-m22(4m2+1),因为y0x0=-14m,所以直线OD方程为y=-14mx.联立方程y=-14mx,x=m,得点M的纵坐标yM=-14,所以点M在定直线y=-14上.由知直线l方程为y=mx-m22.令x=0,得y=-m22,所以G0,-m22.又Pm,m22,F0,12,D2m34m2+1,-m22(4m2+1),所以S1=12|GF|m=(m2+1)m4,S2=12|PM|m-x0|=122m2+142m3+m4m2+1=m(2m2+1)28(4m2+1).所以S1S2=2(4m2+1)(m2+1)(2m2+1)2.设t=2m2+1,则S1S2=(2t-1)(t+1)t2=2t2+t-1t2=-1t2+1t+2,当1t=12,即t=2时,S1S2取到最大值94,此时m=22,满足(*)式,所以P点坐标为22,14.因此S1S2的最大值为94,此时点P的坐标为22,14.