2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx

上传人(卖家):四川天地人教育 文档编号:3762608 上传时间:2022-10-10 格式:DOCX 页数:14 大小:257.98KB
下载 相关 举报
2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx_第1页
第1页 / 共14页
2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx_第2页
第2页 / 共14页
2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx_第3页
第3页 / 共14页
2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx_第4页
第4页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、陕西理科注意事项:1.本试卷分为两部分,第一部分为选择题,第二部分为非选择题.2.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息.3.所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷和答题卡一并交回.第一部分(共50分)一、选择题:在每小题给出的四个选项中,只有一项符合题目要求(本大题共10小题,每小题5分,共50分).1.(2013陕西,理1)设全集为R,函数f(x)=1-x2的定义域为M,则RM为(). A.-1,1B.(-1,1)C.(-,-11,+)D.(-,-1)(1,+)答案:D解析:要使函数f(x)=1-x2有意义,则1-x20,

2、解得-1x1,则M=-1,1,RM=(-,-1)(1,+).2.(2013陕西,理2)根据下列算法语句,当输入x为60时,输出y的值为().输入x;If x50 Theny=0.5􀆽 xElsey=25+0.6􀆽 (x-50)End If输出y.A.25B.30C.31D.61答案:C解析:由算法语句可知y=0.5x,x50,25+0.6(x-50),x50,所以当x=60时,y=25+0.6(60-50)=25+6=31.3.(2013陕西,理3)设a,b为向量,则“|ab|=|a|b|”是“ab”的().A.充分不必要条件B.必要不充分条件C.充分必要条

3、件D.既不充分也不必要条件答案:C解析:若a与b中有一个为零向量,则“|ab|=|a|b|”是“ab”的充分必要条件;若a与b都不为零向量,设a与b的夹角为,则ab=|a|b|cos ,由|ab|=|a|b|得|cos |=1,则两向量的夹角为0或,所以ab.若ab,则a与b同向或反向,故两向量的夹角为0或,则|cos |=1,所以|ab|=|a|b|,故“|ab|=|a|b|”是“ab”的充分必要条件.4.(2013陕西,理4)某单位有840名职工,现采用系统抽样方法抽取42人做问卷调查,将840人按1,2,840随机编号,则抽取的42人中,编号落入区间481,720的人数为().A.11B

4、.12C.13D.14答案:B解析:84042=20,把1,2,840分成42段,不妨设第1段抽取的号码为l,则第k段抽取的号码为l+(k-1)20,1l20,1k42.令481l+(k-1)20720,得25+1-l20k37-l20.由1l20,则25k36.满足条件的k共有12个.5.(2013陕西,理5)如图,在矩形区域ABCD的A,C两点处各有一个通信基站,假设其信号的覆盖范围分别是扇形区域ADE和扇形区域CBF(该矩形区域内无其他信号来源,基站工作正常).若在该矩形区域内随机地选一地点,则该地点无信号的概率是().A.1-4B.2-1C.2-2D.4答案:A解析:S矩形ABCD=1

5、2=2,S扇形ADE=S扇形CBF=4.由几何概型可知该地点无信号的概率为P=S矩形ABCD-S扇形ADE-S扇形CBFS矩形ABCD=2-22=1-4.6.(2013陕西,理6)设z1,z2是复数,则下列命题中的假命题是().A.若|z1-z2|=0,则z1=z2B.若z1=z2,则z1=z2C.若|z1|=|z2|,则z1z1=z2z2D.若|z1|=|z2|,则z12=z22答案:D解析:对于选项A,若|z1-z2|=0,则z1=z2,故z1=z2,正确;对于选项B,若z1=z2,则z1=z2=z2,正确;对于选项C,z1z1=|z1|2,z2z2=|z2|2,若|z1|=|z2|,则z

6、1z1=z2z2,正确;对于选项D,如令z1=i+1,z2=1-i,满足|z1|=|z2|,而z12=2i,z22=-2i,故不正确.7.(2013陕西,理7)设ABC的内角A,B,C所对的边分别为a,b,c,若bcos C+ccos B=asin A,则ABC的形状为().A.锐角三角形B.直角三角形C.钝角三角形D.不确定答案:B解析:bcos C+ccos B=asin A,由正弦定理得sin Bcos C+sin Ccos B=sin2A,sin(B+C)=sin2A,即sin A=sin2A.又sin A0,sin A=1,A=2,故ABC为直角三角形.8.(2013陕西,理8)设函

7、数f(x)=x-1x6,x0时,ff(x)表达式的展开式中常数项为().A.-20B.20C.-15D.15答案:A解析:当x0时,f(x)=-x0,则ff(x)=-x+1x6=x-1x6.Tr+1=C6r(x)6-r-1xr=(-1)rC6rx6-r2x-r2=(-1)rC6rx3-r.令3-r=0,得r=3,此时T4=(-1)3C63=-20.9.(2013陕西,理9)在如图所示的锐角三角形空地中,欲建一个面积不小于300 m2的内接矩形花园(阴影部分),则其边长x(单位:m)的取值范围是().A.15,20B.12,25C.10,30D.20,30答案:C解析:设矩形另一边长为y,如图所

8、示.x40=40-y40,则x=40-y,y=40-x.由xy300,即x(40-x)300,解得10x30,故选C.10.(2013陕西,理10)设x表示不大于x的最大整数,则对任意实数x,y,有().A.-x=-xB.2x=2xC.x+yx+yD.x-yx-y答案:D解析:对于选项A,取x=-1.1,则-x=1.1=1,而-x=-1.1=-(-2)=2,故不正确;对于选项B,令x=1.5,则2x=3=3,2x=21.5=2,故不正确;对于选项C,令x=-1.5,y=-2.5,则x+y=-4=-4,x=-2,y=-3,x+y=-5,故不正确;对于选项D,由题意可设x=x+1,011,y=y+

9、2,021,则x-y=x-y+1-2,由011,-1-20,可得-11-21.若01-21,则x-y=x-y+1-2=x-y;若-11-20,则01+1-21,x-y=x-y+1-2=x-y-1+1+1-2=x-y-1x-y,故选项D正确.第二部分(共100分)二、填空题:把答案填写在答题卡相应题号后的横线上(本大题共5小题,每小题5分,共25分).11.(2013陕西,理11)双曲线x216-y2m=1的离心率为54,则m等于.答案:9解析:由双曲线方程知a=4.又e=ca=54,解得c=5,故16+m=25,m=9.12.(2013陕西,理12)某几何体的三视图如图所示,则其体积为.答案:

10、3解析:由三视图可知该几何体是如图所示的半个圆锥,底面半圆的半径r=1,高SO=2,则V几何体=1322=3.13.(2013陕西,理13)若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为.答案:-4解析:由y=|x-1|=x-1,x1,-x+1,x1及y=2画出可行域如图阴影部分所示.令2x-y=z,则y=2x-z,画直线l0:y=2x并平移到过点A(-1,2)的直线l,此时-z最大,即z最小=2(-1)-2=-4.14.(2013陕西,理14)观察下列等式12=112-22=-312-22+32=612-22+32-42=-10照此规律,第n个等式可为.答

11、案:12-22+32-42+(-1)n+1n2=(-1)n+1n(n+1)2解析:第n个等式的左边第n项应是(-1)n+1n2,右边数的绝对值为1+2+3+n=n(n+1)2,故有12-22+32-42+(-1)n+1n2=(-1)n+1n(n+1)2.15.(2013陕西,理15)(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)A.(不等式选做题)已知a,b,m,n均为正数,且a+b=1,mn=2,则(am+bn)(bm+an)的最小值为.答案:2解析:(am+bn)(bm+an)=abm2+(a2+b2)mn+abn2=ab(m2+n2)+2(a2+b2)2abmn

12、+2(a2+b2)=4ab+2(a2+b2)=2(a2+2ab+b2)=2(a+b)2=2(当且仅当m=n=2时等号成立).B.(几何证明选做题)如图,弦AB与CD相交于O内一点E,过E作BC的平行线与AD的延长线交于点P,已知PD=2DA=2,则PE=.答案:6解析:C与A在同一个O中,所对的弧都是BD,则C=A.又PEBC,C=PED.A=PED.又P=P,PEDPAE,则PEPA=PDPE,PE2=PAPD.又PD=2DA=2,PA=PD+DA=3,PE2=32=6,PE=6.C.(坐标系与参数方程选做题)如图,以过原点的直线的倾斜角为参数,则圆x2+y2-x=0的参数方程为.答案:x=

13、cos2,y=sincos(为参数)解析:由三角函数定义知yx=tan (x0),y=xtan ,由x2+y2-x=0得,x2+x2tan2-x=0,x=11+tan2=cos2,则y=xtan =cos2tan =sin cos ,又=2时,x=0,y=0也适合题意,故参数方程为x=cos2,y=sincos(为参数).三、解答题:解答应写出文字说明、证明过程或演算步骤(本大题共6小题,共75分).16.(2013陕西,理16)(本小题满分12分)已知向量a=cosx,-12,b=(3sin x,cos 2x),xR,设函数f(x)=ab.(1)求f(x)的最小正周期;(2)求f(x)在0,

14、2上的最大值和最小值.解:f(x)=cosx,-12(3sin x,cos 2x)=3cos xsin x-12cos 2x=32sin 2x-12cos 2x=cos6sin 2x-sin6cos 2x=sin2x-6.(1)f(x)的最小正周期为T=2=22=,即函数f(x)的最小正周期为.(2)0x2,-62x-656.由正弦函数的性质,当2x-6=2,即x=3时,f(x)取得最大值1.当2x-6=-6,即x=0时,f(0)=-12,当2x-6=56,即x=2时,f2=12,f(x)的最小值为-12.因此,f(x)在0,2上的最大值是1,最小值是-12.17.(2013陕西,理17)(本

15、小题满分12分)设an是公比为q的等比数列.(1)推导an的前n项和公式;(2)设q1,证明数列an+1不是等比数列.(1)解:设an的前n项和为Sn,当q=1时,Sn=a1+a1+a1=na1;当q1时,Sn=a1+a1q+a1q2+a1qn-1,qSn=a1q+a1q2+a1qn,-得,(1-q)Sn=a1-a1qn,Sn=a1(1-qn)1-q,Sn=na1,q=1,a1(1-qn)1-q,q1.(2)证明:假设an+1是等比数列,则对任意的kN+,(ak+1+1)2=(ak+1)(ak+2+1),ak+12+2ak+1+1=akak+2+ak+ak+2+1,a12q2k+2a1qk=a

16、1qk-1a1qk+1+a1qk-1+a1qk+1,a10,2qk=qk-1+qk+1.q0,q2-2q+1=0,q=1,这与已知矛盾,假设不成立,故an+1不是等比数列.18.(2013陕西,理18)(本小题满分12分)如图,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O为底面中心,A1O平面ABCD,AB=AA1=2.(1)证明:A1C平面BB1D1D;(2)求平面OCB1与平面BB1D1D的夹角的大小.(1)证法一:由题设易知OA,OB,OA1两两垂直,以O为原点建立直角坐标系,如图.AB=AA1=2,OA=OB=OA1=1,A(1,0,0),B(0,1,0),C(-1,0,

17、0),D(0,-1,0),A1(0,0,1).由A1B1=AB,易得B1(-1,1,1).A1C=(-1,0,-1),BD=(0,-2,0),BB1=(-1,0,1),A1CBD=0,A1CBB1=0,A1CBD,A1CBB1,A1C平面BB1D1D.证法二:A1O平面ABCD,A1OBD.又ABCD是正方形,BDAC,BD平面A1OC,BDA1C.又OA1是AC的中垂线,A1A=A1C=2,且AC=2,AC2=AA12+A1C2,AA1C是直角三角形,AA1A1C.又BB1AA1,A1CBB1,A1C平面BB1D1D.(2)解:设平面OCB1的法向量n=(x,y,z),OC=(-1,0,0)

18、,OB1=(-1,1,1),nOC=-x=0,nOB1=-x+y+z=0,x=0,y=-z.取n=(0,1,-1),由(1)知,A1C=(-1,0,-1)是平面BB1D1D的法向量,cos =|cos|=122=12.又02,=3.19.(2013陕西,理19)(本小题满分12分)在一场娱乐晚会上,有5位民间歌手(1至5号)登台演唱,由现场数百名观众投票选出最受欢迎歌手.各位观众须彼此独立地在选票上选3名歌手,其中观众甲是1号歌手的歌迷,他必选1号,不选2号,另在3至5号中随机选2名.观众乙和丙对5位歌手的演唱没有偏爱,因此在1至5号中随机选3名歌手.(1)求观众甲选中3号歌手且观众乙未选中3

19、号歌手的概率;(2)X表示3号歌手得到观众甲、乙、丙的票数之和,求X的分布列及数学期望.解:(1)设A表示事件“观众甲选中3号歌手”,B表示事件“观众乙选中3号歌手”,则P(A)=C21C32=23,P(B)=C42C53=35.事件A与B相互独立,观众甲选中3号歌手且观众乙未选中3号歌手的概率为P(AB)=P(A)P(B)=P(A)1-P(B)=2325=415.或P(AB)=C21C43C32C53=415.(2)设C表示事件“观众丙选中3号歌手”,则P(C)=C42C53=35,X可能的取值为0,1,2,3,且取这些值的概率分别为P(X=0)=P(A B C)=132525=475,P(

20、X=1)=P(A B C)+P(A B C)+P(A B C)=232525+133525+132535=2075,P(X=2)=P(A B C)+P(A B C)+P(A B C)=233525+232535+133535=3375,P(X=3)=P(ABC)=233535=1875,X的分布列为X0123P475207533751875X的数学期望EX=0475+12075+23375+31875=14075=2815.20.(2013陕西,理20)(本小题满分13分)已知动圆过定点A(4,0),且在y轴上截得弦MN的长为8.(1)求动圆圆心的轨迹C的方程;(2)已知点B(-1,0),设不

21、垂直于x轴的直线l与轨迹C交于不同的两点P,Q,若x轴是PBQ的角平分线,证明直线l过定点.(1)解:如图,设动圆圆心O1(x,y),由题意,|O1A|=|O1M|,当O1不在y轴上时,过O1作O1HMN交MN于H,则H是MN的中点,|O1M|=x2+42,又|O1A|=(x-4)2+y2,(x-4)2+y2=x2+42,化简得y2=8x(x0).又当O1在y轴上时,O1与O重合,点O1的坐标(0,0)也满足方程y2=8x,动圆圆心的轨迹C的方程为y2=8x.(2)证明:由题意,设直线l的方程为y=kx+b(k0),P(x1,y1),Q(x2,y2),将y=kx+b代入y2=8x中,得k2x2

22、+(2bk-8)x+b2=0,其中=-32kb+640.由求根公式得,x1+x2=8-2bkk2,x1x2=b2k2,因为x轴是PBQ的角平分线,所以y1x1+1=-y2x2+1,即y1(x2+1)+y2(x1+1)=0,(kx1+b)(x2+1)+(kx2+b)(x1+1)=0,2kx1x2+(b+k)(x1+x2)+2b=0,将,代入得2kb2+(k+b)(8-2bk)+2k2b=0,k=-b,此时0,直线l的方程为y=k(x-1),即直线l过定点(1,0).21.(2013陕西,理21)(本小题满分14分)已知函数f(x)=ex,xR.(1)若直线y=kx+1与f(x)的反函数的图像相切

23、,求实数k的值;(2)设x0,讨论曲线y=f(x)与曲线y=mx2(m0)公共点的个数;(3)设ab,比较f(a)+f(b)2与f(b)-f(a)b-a的大小,并说明理由.解:(1)f(x)的反函数为g(x)=ln x.设直线y=kx+1与g(x)=ln x的图像在P(x0,y0)处相切,则有y0=kx0+1=ln x0,k=g(x0)=1x0,解得x0=e2,k=1e2.(2)曲线y=ex与y=mx2的公共点个数等于曲线y=exx2与y=m的公共点个数.令(x)=exx2,则(x)=ex(x-2)x3,(2)=0.当x(0,2)时,(x)0,(x)在(2,+)上单调递增,(x)在(0,+)上

24、的最小值为(2)=e24.当0me24时,在区间(0,2)内存在x1=1m,使得(x1)m,在(2,+)内存在x2=me2,使得(x2)m.由(x)的单调性知,曲线y=exx2与y=m在(0,+)上恰有两个公共点.综上所述,当x0时,若0me24,曲线y=f(x)与y=mx2有两个公共点.(3)解法一:可以证明f(a)+f(b)2f(b)-f(a)b-a.事实上,f(a)+f(b)2f(b)-f(a)b-aea+eb2eb-eab-ab-a2eb-eaeb+eab-a21-2eaeb+eab-a21-2eb-a+1(ba).(*)令(x)=x2+2ex+1-1(x0),则(x)=12-2ex(

25、ex+1)2=(ex+1)2-4ex2(ex+1)2=(ex-1)22(ex+1)20(仅当x=0时等号成立),(x)在0,+)上单调递增,x0时,(x)(0)=0.令x=b-a,即得(*)式,结论得证.解法二:f(a)+f(b)2-f(b)-f(a)b-a=eb+ea2-eb-eab-a=beb+bea-aeb-aea-2eb+2ea2(b-a)=ea2(b-a)(b-a)eb-a+(b-a)-2eb-a+2,设函数u(x)=xex+x-2ex+2(x0),则u(x)=ex+xex+1-2ex,令h(x)=u(x),则h(x)=ex+ex+xex-2ex=xex0(仅当x=0时等号成立),u(x)单调递增,当x0时,u(x)u(0)=0,u(x)单调递增.当x0时,u(x)u(0)=0.令x=b-a,则得(b-a)eb-a+(b-a)-2eb-a+20,eb+ea2-eb-eab-a0,因此,f(a)+f(b)2f(b)-f(a)b-a.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 历年真题
版权提示 | 免责声明

1,本文(2013年普通高等学校招生全国统一考试数学(陕西卷)理.docx)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|