中考数学常考易错点:4-7《圆》.doc

上传人(卖家):田田田 文档编号:391086 上传时间:2020-03-23 格式:DOC 页数:13 大小:500KB
下载 相关 举报
中考数学常考易错点:4-7《圆》.doc_第1页
第1页 / 共13页
中考数学常考易错点:4-7《圆》.doc_第2页
第2页 / 共13页
中考数学常考易错点:4-7《圆》.doc_第3页
第3页 / 共13页
中考数学常考易错点:4-7《圆》.doc_第4页
第4页 / 共13页
中考数学常考易错点:4-7《圆》.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、4.7 圆易错清单1. 考虑问题不全面,缺乏分类讨论而导致错误.【例1】已知:O的直径为14cm,弦AB=10cm,点P为AB上一点,OP=5cm,则AP的长为cm.【解析】学生画图造成思维定势,画出了一种,因此答案就写一种.没有真正理解“点P为AB上一点,OP=5cm”的含义,即点P是以O为圆心,5cm为半径的弧与AB的交点,这样的点P有两个.【答案】4或6【误区纠错】学生在画图的时候,没有分类的意识,这里的点P是靠近点A还是点B不清楚,因此需要分类.2. 切线的判定【例2】(2014山东临沂)如图,已知等腰三角形ABC的底角为30,以BC为直径的O与底边AB交于点D,过D作DEAC,垂足为

2、E.(1)证明:DE为O的切线;(2)连接OE,若BC=4,求OEC的面积.【解析】(1)首先连接OD,CD,由以BC为直径的O,可得CDAB,又由等腰三角形ABC的底角为30,可得AD=BD,即可证得ODAC,继而可证得结论;(2)首先根据三角函数的性质,求得BD,DE,AE的长,然后求得BOD,ODE,ADE以及ABC的面积,继而求得答案.【解答】(1)连接OD,CD,BC为O直径,BCD=90.即CDAB,ABC是等腰三角形,AD=BD.OB=OC,OD是ABC的中位线.ODAC.DEAC,ODDE.点D在O上,DE为O的切线.【误区纠错】此题考查了切线的判定、三角形中位线的性质、等腰三

3、角形的性质、圆周角定理以及三角函数等知识.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.3. 圆和圆的位置关系.【例3】(2014江苏徐州)如图,以O为圆心的两个同心圆中,大圆与小圆的半径分别为3cm和1cm,若圆P与这两个圆都相切,则圆P的半径为cm.【解析】如解答图所示,符合条件的圆P有两种情形,需要分类讨论.【答案】由题意,圆P与这两个圆都相切若圆P与两圆均外切,如图(1)所示,此时圆P的半径若圆P与两圆均内切,如图(2)所示,此时圆P的半径(1)(2)综上所述,圆P的半径为1cm或2cm.故答案为1或2.【误区纠错】本题考查了圆与圆的位置关系,解题的关键是确定如何与两

4、圆都相切,要注意分类讨论.名师点拨1. 熟练掌握圆的有关性质,掌握求线段、角的方法,理解概念之间的相互联系和知识之间的相互转化.2. 理解直线和圆的三种位置关系,掌握切线的性质和判定,会根据条件解决圆中的动态问题.3. 掌握由两圆半径的和或差与圆心距的大小关系来判定两圆的位置关系,对中考试题中出现的阅读理解题、探索题,要灵活运用圆的有关性质,进行合理推理与计算.提分策略1. 利用垂径定理进行证明或计算.通常利用半径、弦心距和弦的一半组成的直角三角形求解.由于圆中一条弦对应的弧以及圆内的两条平行弦与圆心的位置关系有两种情况,所以利用垂径定理计算时,不要漏解.【例1】(2014湖南张家界)如图,A

5、B,CD是半径为5的O的两条弦,AB=8,CD=6,MN是直径,ABMN于点E,CDMN于点F,P为EF上的任意一点,则PA+PC的最小值为.【答案】72. 圆心角、弧、弦之间的关系的应用.圆心角、弧、弦之间的关系要巧记.同圆或等圆中,有些关系要搞清:等弧对的弦相等,圆心角相等,等弦所对圆心角相等,反之亦成立.【例2】如图,AD为ABC外接圆的直径,ADBC,垂足为F,ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.【解析】(1)根据垂径定理和同圆或等圆中等弧对等弦证明;(2)利用同弧所对的圆周角相

6、等和等腰三角形的判定证明DB=DE=DC.【答案】(1)AD为直径,ADBC,BD=CD.(2)B,E,C三点在以D为圆心,以DB为半径的圆上.理由如下:由(1)知:BD=CD,BAD=CBD.DBE=CBD+CBE,DEB=BAD+ABE,CBE=ABE,DBE=DEB.DB=DE.由(1)知:BD=CD,DB=DE=DC.B,E,C三点在以D为圆心,以DB为半径的圆上.3. 切线的判定与性质的应用.【例3】(2014甘肃白银)如图,RtABC中,ABC=90,以AB为直径作半圆O交AC于点D,点E为BC的中点,连接DE.(1)求证:DE是半圆O的切线.(2)若BAC=30,DE=2,求AD

7、的长.【解析】(1)连接OD,OE,由AB为圆的直径得到三角形BCD为直角三角形,再由E为斜边BC的中点,得到DE=BE=DC,再由OB=OD,OE为公共边,利用SSS得到三角形OBE与三角形ODE全等,由全等三角形的对应角相等得到DE与OD垂直,即可得证.(2)在直角三角形ABC中,由BAC=30,得到BC为AC的一半,根据BC=2DE求出BC的长,确定出AC的长,再由C=60,DE=EC得到三角形EDC为等边三角形,可得出DC的长,由AC-CD即可求出AD的长.【答案】(1)连接OD,OE,AB为圆O的直径,ADB=BDC=90.在RtBDC中,E为斜边BC的中点,DE=BE.在OBE和O

8、DE中,OBEODE(SSS).ODE=ABC=90.则DE为圆O的切线.4. 圆和圆的位置关系的判别.【例4】(2014四川泸州)如图,O1,O2的圆心O1,O2都在直线l上,且半径分别为2cm,3cm,O1O2=8cm.若O1以1cm/s的速度沿直线l向右匀速运动(O2保持静止),则在7s时刻O1与O2的位置关系是().A. 外切B. 相交C. 内含D. 内切【解析】本题考查了圆与圆的位置关系,解题的关键是根据圆的移动速度确定两圆的圆心距,然后根据圆心距和两圆的半径确定答案.【答案】O1O2=8cm,O1以1cm/s的速度沿直线l向右运动,7s后停止运动,7s后两圆的圆心距为1cm,此时两

9、圆的半径的差为3-2=1cm,此时内切.故选D. 5. 圆中涉及弧长、扇形面积等计算问题.求不规则图形的面积,常转化为易解决问题的基本图形,然后求出各图形的面积,通过面积的和差求出结果.【例5】(2014四川内江)通过对课本中硬币滚动中的数学的学习,我们知道滚动圆滚动的周数取决于滚动圆的圆心运动的路程(如图(1).在图(2)中,有2 014个半径为r的圆紧密排列成一条直线,半径为r的动圆C从图示位置绕这2 014个圆排成的图形无滑动地滚动一圈回到原位,则动圆C自身转动的周数为.(1)(2)【解析】它从A位置开始,滚过与它相同的其他2014个圆的上部,到达最后位置.则该圆共滚过了2014段弧长,

10、其中有2段是半径为2r,圆心角为120度,2012段是半径为2r,圆心角为60度的弧长,所以可求得.又因为是来回所以总路程为13142=2628.所以动圆C自身转动的周数为2628r2r=1314.【答案】1314【例6】(2014山东潍坊)如图,两个半径均为的O1与O2相交于A,B两点,且每个圆都经过另一个圆的圆心,则图中阴影部分的面积为.(结果保留)【解析】连接O1O2,由题意知,四边形AO1BO2B是菱形,且AO1O2,BO1O2都是等边三角形,四边形O1AO2B的面积等于两个等边三角形的面积,【答案】专项训练一、 选择题1. (2014甘肃天水模拟)如图所示,AB是O的直径,AD是O的

11、切线,点C在O上,BCOD,AB=2,OD=3,则BC的长为().(第1题)(第2题)2. (2014山东东营模拟)如图,ABCD的顶点A,B,D在O上,顶点C在O的直径BE上,ADC=54,连接AE,则AEB的度数为().A. 36B. 46C. 27D. 633. (2014贵州遵义二模)如图,在等边三角形ABC中,AB,AC都是圆O的弦,OMAB,ONAC,垂足分别为M,N,如果MN=1,那么ABC的面积为().(第3题)(第5题)4. (2013浙江湖州中考模拟试卷)AB是O的直径,点D在AB的延长线上,DC切O于点C,若A=25,则D等于().A. 20B. 30C. 40D. 50

12、5. (2013安徽淮南市洞山中学第四次质量检测)如图,AB是O的直径,C,D为圆上两点,AOC=130,则D等于().A. 25B. 30C. 35D. 50二、 填空题6. (2014北京平谷区模拟)如图,O的直径CDAB,AOC=50,则CDB的度数为.(第6题)(第7题)7. (2014广西玉林一模)如图,在ABCD中,AD=2,AB=4,A=30,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是 . (结果保留)8. (2013江苏东台实中模拟)已知O的半径为6cm,弦AB的长为6cm,则弦AB所对的圆周角的度数是.(第9题)9. (2013吉林长春模拟)如

13、图,P与x轴切于点O,点P的坐标为(0,1),点A在P上,并且在第一象限,APO=120.P沿x轴正方向滚动,当点A第一次落在x轴上时,点A的横坐标为.(结果保留)三、 解答题10. (2014安徽安庆正月21校联考)如图,ABC内接于O,AB为直径,CBA的平分线交AC于点F,交O于点D,DEAB于点E,且交AC于点P,连接AD.(1)求证:DAC=DBA;(2)求证:P是线段AF的中点;(3)若O 的半径为5, ,求tanABF的值.(第10题)11. (2013吉林镇赉县一模)如图,A,B,C是半径为2的圆O上的三个点,其中点A是弧BC的中点,连接AB,AC,点D,E分别在弦AB,AC上

14、,且满足AD=CE.(1)求证:OD=OE;(2)连接BC,当时,求DOE的度数.(第11题)参考答案与解析1. A解析ABCDOA,2. A解析B=ADC=54,AEB=90-B=36.3. B解析根据垂径定理知M,N分别是AB, AC的中点,由三角形中位线定理得出BC=2MN=2,4. C解析COD=A+ACO=25+25=50,D=90-COD=40.8. 30或150解析 弦AB所对的圆周角有二种, 这二种角互补.9. 解析过点A作y轴的垂线,解所得直角三角形即可.10. (1)BD平分CBA,CBD=DBA.DAC与CBD都是弧CD所对的圆周角,DAC=CBD.DAC=DBA.(2)

15、AB为直径,ADB=90.又DEAB于点E,DEB=90 .ADE+EDB=ABD+EDB=90.ADE=ABD=DAP.PD=PA.又DFA+DAC=ADE+PDF=90,且ADE=DAC,PDF=PFD.PD=PF.PA=PF,即P是线段AF的中点.(3)DAF=DBA,ADB=FDA=90,FDAADB.11. (1)连接OA.点A是弧BC的中点,AOB=AOC.OA=OB=OC,ABO=BAO=OAC=ACO.AD=CE,AO=CO,OAB=OCA,ADOCEO.OD=OE.BF=OF.AOB=45.AODCOE,AOD=COE.BOD=AOE.DOE=AOB=45.第 - 13 - 页 共 13 页

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(中考数学常考易错点:4-7《圆》.doc)为本站会员(田田田)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|