1、14.3.1 提公因式法第十四章 整式的乘法与因式分解14.3 因式分解激趣导入激趣导入如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?abcm方法一:m(a+b+c)方法二:ma+mb+mcm(a+b+c)=ma+mb+mc整式乘法?1.运用整式乘法法则或公式填空:(1)m(a+b+c)=;(2)(x+1)(x-1)=;(3)(a+b)2=.ma+mb+mcx2-1a2+2ab+b2因式分解一2.根据等式的性质填空:(1)ma+mb+mc=()()(2)x2-1=()()(3)a2+2ab+b2=()2m a+b+cx+1 x-1a+b 都是多项式化为几个整式的积的形式比一
2、比,这些式子有什么共同点?合作互助合作互助u定义:把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.合作互助合作互助x2-1 (x+1)(x-1)因式分解整式乘法x2-1=(x+1)(x-1)等式的特征:左边是多项式,右边是几个整式的乘积想一想:整式乘法与因式分解有什么关系?是互为相反的变形,即例1 下列从左到右的变形中是因式分解的有()x2y21(xy)(xy)1;x3xx(x21);(xy)2x22xyy2;x29y2(x3y)(x3y)A1个 B2个 C3个 D4个B方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是
3、一个式子的不同表现形式因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式精讲实练精讲实练在下列等式中,从左到右的变形是因式分解的有 ,不是的,请说明为什么?1x 辨一辨:am+bm+c=m(a+b)+c24x2y=3x 8xyx2-1=(x+1)(x-1)(2x+1)2=4x2+4x+1x2+x=x2(1+)2x+4y+6z=2(x+2y+3z)最后不是积的运算因式分解的对象是多项式,是整式乘法每个因式必须是整式pa+pb+pc用提公因式法分解因式二 多项式中各项都含有的相同因式,叫作这个多项式的公因式.相同因式p问题1 观察下列多项式,它们有什么共同特点?x2x相同因式x合
4、作互助合作互助 一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(a+b+c )pa+pb+pcp=找 3x 2 6 xy 的公因式.系数:最大公约数3字母:相同的字母x 所以公因式是3x指数:相同字母的最低次数1问题2 如何确定一个多项式的公因式?u正确找出多项式的公因式的步骤:3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.1.定系数:公因式的系数是多项式各项系数的最大公约数.2.定字母:字母取多项式各项中都含有的相同的字母.找一找:下列各多项式的公因式是什么?3aa22(m+n)3m
5、n-2xy(1)3x+6y(2)ab-2ac(3)a 2-a 3(4)4(m+n)2+2(m+n)(5)9 m 2n-6mn (6)-6 x 2 y-8 xy 2(1)8a3b2+12ab3c;例2 把下列各式分解因式分析:提公因式法步骤(分两步)第一步:找出公因式;第二步:提取公因式,即将多项式化为两个因式的乘积.(2)2a(b+c)-3(b+c).公因式既可以是一个单项式的形式,也可以是一个多项式的形式.整体思想是数学中一种重要而且常用的思想方法.精讲实练精讲实练解:(1)8a3b2+12ab3c=4ab2 2a2+4ab2 3bc=4ab2(2a2+3bc);如果提出公因式4ab,另一个
6、因式是否还有公式?另一个因式将是2a2b+3b2c,它还有公因式是b.(2)2a(b+c)-3(b+c)=(b+c)(2a-3).如何检查因式分解是否正确?做整式乘法运算.例3 计算:(1)39371391;(2)2920.167220.161320.1620.1614.(2)原式20.16(29721314)2016.1320260;解:(1)原式31337139113(33791)方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便例4 已知ab7,ab4,求a2bab2的值原式ab(ab)4728.解:ab7,ab4,方法总结:含ab,ab的求值题,通常要将所求
7、代数式进行因式分解,将其变形为能用ab和ab表示的式子,然后将ab,ab的值整体带入即可.1.把下列各式分解因式:(1)8 m2n+2mn=_;(2)12xyz-9x2y2=_;(3)p(a2+b2)-q(a2+b2)=_;(4)-x3y3-x2y2-xy=_;2mn(4m+1)3xy(4z-3xy)(a2+b2)(p-q)-xy(x2y2+xy+1)(5)(x-y)2+y(y-x)=_.(y-x)(2y-x)测评达标测评达标2.简便计算:(1)1.992+1.990.01;(2)20132+2013-20142;(3)(-2)101+(-2)100.(2)原式=2013(2013+1)-20142 =20132014-20142=2014(2013-2014)=-2014解:(1)原式=1.99(1.99+0.01)=3.98;(3)原式=(-2)100(-2+1)=2100(-1)=-2100.课堂小结课堂小结因式分解定义定义am+bm+mc=m(a+b+c)方法方法提公因式法公式法确定公因式的方法:三定,即定系数;定字母;定指数分两步:第一步找公因式;第二步提公因式(下节课学习)注意注意1.分解因式是一种恒等变形;2.公因式:要提尽;3.不要漏项;4.提负号,要注意变号