1、小学数学复习考试知识点汇总一、 小学生数学法则知识归类 (一)混合运算计算法则 1、在没有括号的算式里,只有加减法或只有乘除法的,都要从左往右按顺序运算; 2、在没有括号的算式里,有乘除法和加减法的,要先算乘除再算加减; 3、算式里有括号的要先算括号里面的。 (二)四位数的读法 1、从高位起按顺序读,千位上是几读几千,百位上是几读几百,依次类推; 2、中间有一个0或两个0只读一个“零”; 3、末位不管有几个0都不读。 (三)四位数写法 1、从高位起,按照顺序写; 2、几千就在千位上写几,几百就在百位上写几,依次类推,中间或末尾哪一位上一个也没有,就在哪一位上写“0”。 (四)万级数的读法法则
2、1、先读万级,再读个级; 2、万级的数要按个级的读法来读,再在后面加上一个“万”字; 3、每级末位不管有几个0都不读,其它数位有一个0或连续几个零都只读一个“零”。 (五)多位数的读法法则 1、从高位起,一级一级往下读; 2、读亿级或万级时,要按照个级数的读法来读,再往后面加上“亿”或“万”字; 3、每级末尾的0都不读,其它数位有一个0或连续几个0都只读一个零。 (六)小数大小的比较 比较两个小数的大小,先看它们整数部分,整数部分大的那个数就大,整数部分相同的,十分位上的数大的那个数就大,十分位数也相同的,百分位上的数大的那个数就大,依次类推。 (七)小数加减法计算法则 计算小数加减法,先把小
3、数点对齐(也就是把相同的数位上的数对齐),再按照整数加减法则进行计算,最后在得数里对齐横线上的小数点位置,点上小数点。 (八)小数乘法的计算法则 计算小数乘法,先按照乘法的法则算出积,再看因数中一共几位小数,就从积的右边起数出几位,点上小数点。 (九)除数是小数的除法运算法则 除数是小数的除法,先移动除数小数点,使它变成整数;除数的小数点向右移几位,被除数小数点也向右移几位(位数不够在被除数末尾用0补足)然后按照除数是整数的小数除法进行计算。 (十)解答应用题步骤 1、弄清题意,并找出已知条件和所求问题,分析题里的数量关系,确定先算什么,再算什么,最后算什么; 2、确定每一步该怎样算,列出算式
4、,算出得数;3、进行检验,写出答案。 (十一)列方程解应用题的一般步骤 1、弄清题意,找出未知数,并用X表示; 2、找出应用题中数量之间的相等关系,列方程; 3、解方程; 4、检验、写出答案。 (十二)同分母分数加减的法则 同分母分数相加减,分母不变,只把分子相加减。 (十三)同分母带分数加减的法则 带分数相加减,先把整数部分和分数部分分别相加减,再把所得的数合并起来。 (十四)异分母分数加减的法则 异分母分数相加减,先通分,然后按照同分母分数加减的法则进行计算。 (十五)分数乘以整数的计算法则 分数乘以整数,用分数的分子和整数相乘的积作分子,分母不变。 (十六)分数乘以分数的计算法则 分数乘
5、以分数,用分子相乘的积作分子,分母相乘的积作分母。 (十七)一个数除以分数的计算法则 一个数除以分数,等于这个数乘以除数的倒数。 (十八)把小数化成百分数和把百分数化成小数的方法 把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号; 把百分数化成小数,把百分号去掉,同时小数点向左移动两位。 (十九)把分数化成百分数和把百分数化成分数的方法 把分数化成百分数,通常先把分数化成小数(除不尽通常保留三位小数),再把小数化成百分数; 把百分数化成小数,先把百分数改写成分母是100的分数,能约分的要约成最简分数。 二、小学数学口决定义归类 1、什么是图形的周长? 围成一个图形所有边长的总和
6、就是这个图形的周长。 2、什么是面积? 物体的表面或围成的平面图形的大小叫做他们的面积。 3、加法各部分的关系: 一个加数=和-另一个加数 4、减法各部分的关系: 减数=被减数-差被减数=减数+差 5、乘法各部分之间的关系: 一个因数=积另一个因数 6、除法各部分之间的关系: 除数=被除数商被除数=商除数 7、角 (1)什么是角? 从一点引出两条射线所组成的图形叫做角。 (2)什么是角的顶点? 围成角的端点叫顶点。 (3)什么是角的边? 围成角的射线叫角的边。 (4)什么是直角? 度数为90的角是直角。 (5)什么是平角? 角的两条边成一条直线,这样的角叫平角。 (6)什么是锐角? 小于90的
7、角是锐角。 (7)什么是钝角? 大于90而小于180的角是钝角。 (8)什么是周角? 一条射线绕它的端点旋转一周所成的角叫周角,一个周角等于360. 8、(1)什么是互相垂直?什么是垂线?什么是垂足? 两条直线相交成直角时,这两条线互相垂直,其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。 (2)什么是点到直线的距离? 从直线外一点向一条直线引垂线,点和垂足之间的距离叫做这点到直线的距离。 9、三角形 (1)什么是三角形? 有三条线段围成的图形叫三角形。 (2)什么是三角形的边? 围成三角形的每条线段叫三角形的边。 (3)什么是三角形的顶点? 每两条线段的交点叫三角形的顶点。 (4
8、)什么是锐角三角形? 三个角都是锐角的三角形叫锐角三角形。 (5)什么是直角三角形? 有一个角是直角的三角形叫直角三角形。 (6)什么是钝角三角形? 有一个角是钝角的三角形叫钝角三角形。 (7)什么是等腰三角形? 两条边相等的三角形叫等腰三角形。 (8)什么是等腰三角形的腰? 有等腰三角形里,相等的两个边叫做等腰三角形的腰。 (9)什么是等腰三角形的顶点? 两腰的交点叫做等腰三角形的顶点。 (10)什么是等腰三角形的底? 在等腰三角形中,与其它两边不相等的边叫做等腰三角形的底。 (11)什么是等腰三角形的底角? 底边上两个相等的角叫等腰三角形的底角。 (12)什么是等边三角形? 三条边都相等的
9、三角形叫等边三角形,也叫正三角形。 (13)什么是三角形的高?什么叫三角形的底? 从三角形的一个顶点向它的对边引一条垂线,顶点和垂足之间的线段叫做三角形的高,这个顶点的对边叫三角形的底。 (14)三角形的内角和是多少度? 三角形内角和是180. 10、四边形 (1)什么是四边形? 有四条线段围成的图形叫四边形。 (2)什么是平等四边形? 两组对边分别平行的四边形叫做平行四边形。 (3)什么是平行四边形的高? 从平行四边形一条边上的一点到对边引一条垂线,这个点和垂足之间的线段叫做四边形的高。 (4)什么是梯形? 只有一组对边平行的四边形叫做梯形。 (5)什么是梯形的底? 在梯形里互相平等的一组边
10、叫梯形的底(通常较短的底叫上底,较长的底叫下底)。 (6)什么是梯形的腰? 在梯形里,不平等的一组对边叫梯形的腰。 (7)什么是梯形的高? 从上底的一点往下底引一条垂线,这个点和垂足之间的线段叫做梯形的高。 (8)什么是等腰梯形? 两腰相等的梯形叫做等腰梯形。 11、什么是自然数? 用来表示物体个数的0、1、2、3、4、5、6、7、8、9、10是自然数(自然数都是整数)。 12、什么是四舍五入法? 求一个数的近似数时,看被省略的尾数最高位上的数是几,如果是4或者比4小,就把尾数舍去,如果是5或者比5大,去掉尾数后,要在它的前一位加1。这种求近似数的方法,叫做四舍五入法。 13、加法意义和运算定
11、律 (1)什么是加法? 把两个数合并成一个数的运算叫加法。 (2)什么是加数? 相加的两个数叫加数。 (3)什么是和? 加数相加的结果叫和。 (4)什么是加法交换律? 两个数相加,交换加数的位置后,它的和不变,这叫做加法交换律。 14、什么是减法? 已知两个数的和与其中的一个加数,求另一个加数的运算叫做减法。 15、什么是被减数?什么是减数?什么叫差? 在减法中已知的和叫被减数,减去的已知数叫减数,所求的未知数叫差。 16、什么是因数? 相乘的两个数叫因数。 17、什么是乘法交换律? 两个因数相乘,交换因数的位置,它们的积不变,这叫乘法交换律。 18、什么是乘法结合律? 三个数相乘,先把前两个
12、数相乘,再同第三个数相乘,或者先把后两个数相乘,再同第一个数相乘,它们的积不变,这叫乘法结合律。 19、除法 (1)什么是除法? 已知两个因数的积与其中的一个因数,求另一个因数的运算叫除法。 (2)什么是被除数? 在除法中,已知的积叫被除数。 (3)什么是除数? 在除法中,已知的一个因数叫除数。 (4)什么是商? 在除法中,求出的未知因数叫商。 20、乘法各部分的关系: 积=因数因数一个因数=积另一个因数 21、(1)除法各部分间的关系: 商=被除数除数除数=被除数商 (2)有余数的除法各部分间的关系: 被除数=商除数+余数 22、什么是名数? 通常量得的数和单位名称合起来的数叫名数。 23、
13、什么是单名数? 只带有一个单位名称的数叫单名数。 24、什么是复名数? 有两个或两个以上单位名称的数叫复名数。 25、什么是小数? 仿照整数的写法,写在整数个位的右面,用圆点隔开,用来表示十分之几、百分之几、千分之几的数叫小数。 26、什么是小数的基本性质? 小数的末尾添上零或者去掉零,小数大小不变,这叫小数的基本性质。 27、什么是有限小数? 小数部分的位数是有限的小数叫有限小数。 28、什么是无限小数? 小数部分的位数是无限的小数叫无限小数。 29、什么是循环节? 一个循环小数的部分依次不断重复出现的数叫做这个数的循环节。 30、什么是纯循环小数? 循环节从小数第一位开始的叫纯循环小数。
14、31、什么是混循环小数? 循环节不是从小数部分第一位开始的叫做混循环小数。 32、什么是四则运算? 我们把学过的加、减、乘、除四种运算统称四则运算。 33、什么是方程? 含有未知数的等式叫方程。 34、什么是解方程? 求方程解的过程叫解方程。 35、什么是倍数?什么叫约数? 如果a能被b整除,a就是b的倍数,b就叫a的约数(或a的因数)。 36、什么样的数能被2整除? 个位上是0、2、4、6、8的数都能被2整除。 37、什么是偶数? 能被2整除的数叫偶数。 38、什么是奇数? 不能被2整除的数叫奇数。 39、什么样的数能被5整除? 个位上是0或5的数能被5整除。 40、什么样的数能被3整除?
15、一个数的各位上的和能被3整除,这个数就能被3整除。 41、什么是质数(或素数)? 一个数如果只有1和它本身两个约数,这样的数叫质数。 42、什么是合数? 一个数除了1和它本身还有别的约数,这样的数叫合数。 43、什么是质因数? 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数。 44、什么是分解质因数? 把一个合数用质因数相乘的形式表示出来叫做分解质因数。 45、什么是公约数?什么叫最大公约数? 几个数公有的约数叫公约数。其中最大的一个叫最大公约数。 46、什么是互质数? 公约数只有1的两个数叫互质数。 47、什么是公倍数?什么是最小公倍数? 几个数公
16、有的倍数叫这几个数的公倍数。其中最小的一个叫这几个数的最小公倍数。 48、分数 (1)什么是分数? 把单位1平均分成若干份,表示这样的一份或者几份的数叫分数。 (2)什么是分数线? 在分数里中间的横线叫分数线。 (3)什么是分母? 分数线下面的部分叫分母。 (4)什么是分子? 分数线上面的部分叫分子。 (5)什么是分数单位? 把单位“1”平均分成若干份,表示其中的一份叫分数单位。 49、怎么比较分数大小? (1)分母相同的两个分数,分子大的分数比较大。 (2)分子相同的两个分数,分母小的分子比较大。 (3)什么是真分数? 分子比分母小的分数叫真分数。 (4)什么是假分数? 分子比分母大或者分子
17、和分母相等的分数叫假分数。 (5)什么是带分数? 由整分数和真分数合成的数通常叫带分数。 (6)什么是分数的基本性质? 分数的分子和分母同时乘或除以相同的数(0除外),分数大小不变,这就是分数的基本性质。 (7)什么是约分? 把一个分数化成同它相等,但分子、分母都比较小的数叫做约分。 (8)什么是最简分数? 分子、分母是互质数的分数叫最简分数。 50、比 (1)什么是比? 两个数相除又叫两个数的比。 (2)什么是比的前项? 比号前面的数叫比的前项。 (3)什么是比的后项? 比号后面的数叫比的后项。 (4)什么是比值? 比的前项除以后项所得的商叫比值。 (5)什么是比的基本性质? 比的前项和后项
18、同时乘以或者同时除以相同的数(0除外)比值不变,这叫比的基本性质。 51、长方体和正方体 (1)什么是棱? 两个面相交的边叫棱。 (2)什么是顶点? 三条棱相交的点叫顶点。 (3)什么是长方体的长、宽、高? 相交于一个顶点的三条棱的长度分别叫长方体的长、宽、高。 (4)什么是正方体(立方体)? 长宽高都相等的长方体叫正方体(或立方体)。 (5)什么是长方体的表面积? 长方体六个面的总面积叫长方体的表面积。 (6)什么是物体体积? 物体所占空间的大小叫做物体的体积。 52、圆 (1)什么是圆心? 圆中心的点叫圆心。 (2)什么是半径? 连接圆心和圆上任意一点的线段叫半径。 (3)什么是直径? 通
19、过圆心、并且两端都在圆上的线段叫直径。 (4)什么是圆的周长? 围成圆的曲线叫圆的周长。 (5)什么是圆周率? 我们把圆的周长和直径的比值叫圆周率。 (6)什么是圆的面积? 圆所围平面的大小叫圆的面积。 (7)什么是扇形? 一条弧和经过这条弧两端的两条半径所围成的图形叫扇形。 (8)什么是弧? 在圆上两点之间的部分叫弧。 (9)什么是圆心角? 顶点在圆心上的角叫圆心角。 (10)什么是对称图形? 如果一个图形沿着一条直线对折,两侧图形能够完全重合,这样的图形就是对称图形。 53、什么是百分数? 表示一个数是另一个数百分之几的数叫百分数,百分数也叫百分率或百分比。 54、比例 (1)什么是比例?
20、 表示两个比相等的式子叫比例。 (2)什么是比例的项? 组成比例的四个数叫比例的项。 (3)什么是比例外项? 两端的两项叫比例外项。 (4)什么是比例内项? 中间的两项叫比例内项。 (5)什么是比例的基本性质? 在比例中两个外项的积等于两个内项的积。 (6)什么是解比例?求比例中的未知项叫解比例。 (7)什么是正比例关系? 两种相关的量,一种变化,另一种量也变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量叫正比例的量,它们的关系叫正比例关系。 (8)什么是反比例关系? 两种相关的量,一种变化,另一种也随着变化,如果这两种量中相对应的积一定,这两种量叫反比例的量,它们的关系成反
21、比例关系。 55、圆柱 (1)什么是圆柱底面? 圆柱的上下两个面叫圆柱的底面。 (2)什么是圆柱的侧面? 圆柱的曲面叫圆柱的侧面。 (3)什么是圆柱的高? 圆柱两个底面的距离叫圆柱的高。 三、小学数学量的计算单位及进率归类 1、长度计量单位及进率:千米(公里)、米、分米、厘米、毫米 1千米=1公里1千米=1000米 1米=10分米1分米=10厘米1厘米=10毫米 2、面积计量单位及进率:平方千米、公顷、平方米、平方分米、平方厘米 1平方千米=100公顷1平方千米=1000000平方米 1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米 3、体积容积计量单位及进率:立方米
22、、立方分米、立方厘米、升、毫升 1立方米=1000立方分米1立方分米=1000立方厘米 1立方分米=1升1立方厘米=1毫升 4、质量单位及进率:吨、千克、公斤、克 1吨=1000千克1千克=1公斤1千克=1000克 5、时间单位及进率:世纪、年、月、日、小时、分、秒 1世纪=100年1年=12月1天=24小时1小时=60分1分=60秒 (31天的月份有1、3、5、7、8、10、12月份, 30天的月份有4、6、9、11月份, 平年2月28天,闰年2月29天) 四、常用计算公式表 1、长方形面积=长宽,计算公式S=ab 2、正方形面积=边长边长,计算公式S=aa=a2 3、长方形周长=(长+宽)
23、2,计算公式C=(a+b)2 4、正方形周长=边长4,计算公式C=4a 5、平行四边形面积=底高,计算公式S=ah 6、三角形面积=底高2,计算公式S=ah2 7、梯形面积=(上底+下底)高2,计算公式S=(a+b)h2 8、长方体体积=长宽高,计算公式V=abh 9、圆的面积=圆周率半径平方,计算公式V=r2 10、正方体体积=棱长棱长棱长,计算公式V=a3 11、长方体和正方体的体积都可以写成底面积高,计算公式V=sh 12、圆柱的体积=底面积高,计算公式V=sh小学数学知识点汇总一整数和小数1最小的一位数是1,最小的自然数是02小数的意义:把整数“1”平均分成10份、100份、1000份
24、这样的一份或几份分别是十分之几、百分之几、千分之几可以用小数来表示。3小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位4小数的分类:小数 、有限小数、无限小数、无限循环小数、 无限不循环小数5整数和小数都是按照十进制计数法写出的数。6小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。7小数点向右移动一位、二位、三位原来的数分别扩大10倍、100倍、1000倍小数点向左移动一位、二位、三位原来的数分别缩小10倍、100倍、1000倍二数的整除1整除:整数a除以整数b(b0),除得的商正好是整数而且没有余数,我们就说a能被b整除,或者说b能整除a。2约数、倍数:如
25、果数a能被数b整除,a就叫做b的倍数,b就叫做a的约数。3一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。 一个数约数的个数是有限的,最小的约数是1,最大的约数是它本身。4按能否被2整除,非0的自然数分成偶数和奇数两类,能被2整除的数叫做偶数,不能被2整除的数叫做奇数。5按一个数约数的个数,非0自然数可分为1、质数、合数三类。质数:一个数,如果只有1和它本身两个约数,这样的数叫做质数。质数都有2个约数。合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。合数至少有3个约数。最小的质数是2,最小的合数是4120以内的质数有:2、3、5、7、11、13、17、19120以
26、内的合数有“4、6、8、9、10、12、14、15、16、186能被2整除的数的特征:个位上是0、2、4、6、8的数,都能被2整除。 能被5整除的数的特征:个位上是0或者5的数,都能被5整除。能被3整除的数的特征:一个数的各位上 数的和能被3整除,这个数就能被3整除。7质因数:如果一个自然数的因数是质数,这个因数就叫做这个自然数的质因数。8分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。9公约数、公倍数:几个数公有的约数,叫做这几个数的公约数;其中最大的一个,叫做这几个数的最大公约数。几个数公有的倍数,叫做这几个数的公倍数;其中最小的一个,叫做这几个数的最小公倍数。10一般关
27、系的两个数的最大公约数、最小公倍数用短除法来求;互质关系的两个数最大公约数是1,最小公倍数是两数之积;倍数关系的两个数的最大公约数是小数,最小公倍数是大数。11互质数:公约数只有1的两个数叫做互质数。12两数之积等于最小公倍数和最大公约数的积。三四则运算1一个加数=和-另一个加数 被减数=差+减数 减数=被减数-差一个因数=积另一个因数 被除数=商除数 除数=被除数商2在四则运算中,加、减法叫做第一级运算,乘、除法叫做第二级运算。3.运算定律:(1)加法交换律:a+b=b+a 乘法交换律:ab=ba 两个数相加,交换加数的位置,它们的和不变。两个数相加,交换因数的位置,它们的积不变。(2)加法
28、结合律:(a+b)+c=a+(b+c) 乘法结合律:(ab)c=a(bc)三个数相加,先把前两个数相加,再同第三个数相加;或者先把后两个数相加,再同第一个数相加,它们的和不变。三个数相乘,先把前两个数相乘,再同第三个数相乘;或者先把后两个数相乘,再同第一个数相乘,它们的积不变。(3)乘法分配律:(a+b)c=ac+bc两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。(4)减法的性质:a-b-c=a-(b+c) 除法的性质:abc=a(bc)从一个数里连续减去两个数,等于从这个数里减去两个减数的和。一个数连续除以两个数,等于这个数除以两个除数的积。 四关系式1速
29、度时间=路程 路程时间=速度 路程速度=时间工作效率工作时间=工作总量 工作总量工作效率=工作时间 工作总量工作时间=工作效率 单价数量=总价 总价数量=单价 总价单价=数量五方程1 方程:含有未知数的等式叫做方程。2 方程的解:使方程左右两边相等的未知数的值,叫做方程的解。3 解方程:求方程解的过程叫做解方程。六分数和百分数1 分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。2 分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。3 分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。分数和小数的联系:小数实际上就是分母是10、1
30、00、1000的分数。分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。4 分数的分类:分数可以分为真分数和假分数。5 真分数:分子小于分母的分数叫做真分数。真分数小于1。假分数:分子大于或等于分母的分数叫做假分数。假分数大于或者等于1。6最简分数:分子与分母互质的分数叫做最简分数。7分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。8这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。9百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫做百分率或者百分比。百分数通常用“%”来表示。14 / 14