1、 风险资产的定价风险资产的定价 可行集可行集指的是由N种证券所形成的所有组合的集合,它包括了现实生活中所有可能的组合。也就是说,所有可能的组合将位于可行集的边界上或内部。APNHBPR有效集对于同样的风险水平,他们将会选择能提供最大预期收益率的组合;对于同样的预期收益率,他们将会选择风险最小的组合。能同时满足这两个条件的投资组合的集合就是有效集。处于有效边界上的组合称为有效组合 N、B两点之间上方边界上的可行集就是有效集有效集曲线的特点有效集是一条向右上方倾斜的曲线有效集是一条向上凸的曲线有效集曲线上不可能有凹陷的地方 最优投资组合的选择最优投资组合的选择 无差异曲线与有效集的相切点 厌恶风险
2、程度越高的投资者,其无差异曲线的斜率越陡,因此其最优投资组合越接近N点。厌恶风险程度越低的投资者,其无差异曲线的斜率越小,因此其最优投资组合越接近B点。无风险贷款对有效集的影响无风险贷款对有效集的影响 无风险贷款相当于投资于无风险资产无风险资产应没有任何违约可能和市场风险严格地说,只有到期日与投资期相等的国债才是无风险资产。但在现实中,为方便起见,人们常将1年期的国库券或者货币市场基金当作无风险资产。投资于一种无风险资产和一种风险资产的情形 该组合的预期收益率为:(8.1)nifiiprXRXRXR1211投资于一种无风险资产和一种风险资产的情形该组合的标准差为(8.2):1111XXXnin
3、jijjip投资于一种无风险资产和一种风险资产的情形将(8.2)代入(8.1)得:其中 为单位风险报酬(Reward-to-Variability),又称夏普比率 pffprRrR1111frR 资产配置线上式所表示的只是一个线段,若A点表示无风险资产,B点表示风险资产,由这两种资产构成的投资组合的预期收益率和风险一定落在A、B这个线段上,因此AB连线可以称为资产配置线。PR PBA投资于一种无风险资产和一个证券组合的情形 PRBAPCD无风险贷款对有效集的影响 引入无风险贷款后,新的有效集由AT线段和TD弧线构成 PRTAPCD最优风险组合最优风险组合实际上是使无风险资产(A点)与风险资产组
4、合的连线斜率最大的风险资产组合。我们的目标是求 其中:1=XAA+XB B 11f,XXrRMaxBARBABABBAAXXXX2222221R最优风险组合最优风险组合的权重解如下:BAfBfAAfBBfABAfBBfAArRrRrRrRrRrRX222无风险贷款对投资组合选择的影响 对于厌恶风险程度较轻,从而其选择的投资组合位于DT弧线上的投资者而言,其投资组合的选择将不受影响。PRTAPOAC无风险贷款对投资组合选择的影响对于较厌恶风险的投资者而言,将选择其无差异曲线与AT线段相切所代表的投资组合.PRAPTOCD最优资产配置比例投资者面临的最优风险组合的预期收益率为 ,标准差为 。其投资
5、效用函数(U)为:1R1221PPARU最优资产配置比例 分别表示整个投资组合(包括无风险资产和最优风险组合)的预期收益率和标准差,它们分别等于:2PPR和212211yRyryRPfP最优资产配置比例投资者的目标是通过选择最优的资产配置比例y来使他的投资效用最大化。21215.01AyRyryUMaxfy最优资产配置比例将上式对y求偏导并令其等于0,我们就可以得到最优的资产配置比例y*:211*ArRyf无风险借款对有效集的影响无风险借款对有效集的影响 在现实生活中,投资者可以借入资金并用于购买风险资产。由于借款必须支付利息,而利率是已知的。在该借款本息偿还上不存在不确定性。因此我们把这种借
6、款称为无风险借款。无风险借款并投资于一种风险资产的情形 PRPAB无风险借款并投资于风险资产组合的情形 PRPABDC无风险借款对有效集的影响 PRPATCD无风险借款对投资组合选择的影响 厌恶风险程度较轻的投资者将选择其无差异曲线与AT直线切点所代表的投资组合。PRAPCDTOO无风险借款对投资组合选择的影响对于较厌恶风险从而其选择的投资组合位于CT弧线上的投资者而言,其投资组合的选择将不受影响。PRAPODCT资本资产定价模型资本资产定价模型 基本的假定基本的假定 1所有投资者的投资期限均相同。2投资者根据投资组合在单一投资期内的预期收益率和标准差来评价这些投资组合。3投资者永不满足,当面
7、临其他条件相同的两种选择时,他们将选择具有较高预期收益率的那一种。4投资者是厌恶风险的,当面临其他条件相同的两种选择时,他们将选择具有较小标准差的那一种。资本资产定价模型资本资产定价模型5每种资产都是无限可分的。6投资者可按相同的无风险利率借入或贷出资金。7税收和交易费用均忽略不计。8对于所有投资者来说,信息都是免费的并且是立即可得的。9投资者对于各种资产的收益率、标准差、协方差等具有相同的预期。分离定理投资者对风险和收益的偏好状况与该投资者风险资产组合的最优构成是无关的。PRAPO1O2DCT市场组合 在均衡状态下,每种证券在均衡点处投资组合中都有一个非零的比例。所谓市场组合是指由所有证券构
8、成的组合,在这个组合中,每一种证券的构成比例等于该证券的相对市值。习惯上,人们将切点处组合叫做市场组合,并用M代替T来表示。从理论上说,M不仅由普通股构成,还包括优先股、债券、房地产等其它资产。但在现实中,人们常将M局限于普通股。共同基金定理 如果我们把货币市场基金看做无风险资产,那么投资者所要做的事情只是根据自己的风险厌恶系数A,将资金合理地分配于货币市场基金和指数基金。有效集 如果我们用M代表市场组合,用Rf代表无风险利率,从Rf出发画一条经过M的直线,这条线就是在允许无风险借贷情况下的线性有效集,在此我们称为资本市场线 PRPMRfRMM资本市场线资本市场线的斜率等于市场组合预期收益率与
9、无风险证券收益率之差 除以它们的风险之差 ,由于资本市场线与纵轴的截距为Rf,因此其表达式为:)(fMRR)(oMpMfMfpRRRR证券市场线市场组合标准差的计算公式为:证券i跟市场组合的协方差等于证券i跟市场组合中每种证券协方差的加权平均数:2/111ninjijjMiMMXXnjijjMiMX1协方差与预期收益率在考虑市场组合风险时,重要的不是各种证券自身的整体风险,而是其与市场组合的协方差。具有较大 值的证券必须按比例提供较大的预期收益率以吸引投资者。iM单个证券风险和收益的关系在均衡状态下,单个证券风险和收益的关系可以写为:或者 iMMfMfiRRRR)(2iMfMfiRRRR)(贝
10、塔系数贝塔系数的一个重要特征是,一个证券组合的值等于该组合中各种证券值的加权平均数,权数为各种证券在该组合中所占的比例,即:niiMipMX1资本市场线和证券市场线比较资本市场线和证券市场线可以看出,只有最优投资组合才落在资本市场线上,其他组合和证券则落在资本市场线下方。而对于证券市场线来说,无论是有效组合还是非有效组合,它们都落在证券市场线上。单因素模型 虽然从严格意义上讲,CAPM中的贝塔与单因素模型的贝塔是有区别的,前者相对于市场组合而言,后者相对于市场指数而言,但是我们一般用市场指数来代替市场组合。itmtiiitRR多因素模型 IttGBitCGitEIitIPiiitGBCGEII
11、PR不一致性预期不一致性预期 林特耐(Lintner)1967年的研究表明,不一致性预期的存在并不会给资本资产定价模型造成致命影响,只是资本资产定价模型中的预期收益率和协方差需使用投资者预期的一个复杂的加权平均数。尽管如此,如果投资者存在不一致性预期,市场组合就不一定是有效组合,其结果是资本资产定价模型不可检验。多要素资本资产定价模型多要素资本资产定价模型 该公式表明,投资者除了承担市场风险需要补偿之外,还要求因承担市场外风险而要求获得补充。当市场外要素的风险为零时,多要素资本资产定价模型就转化为传统的CAPMFKifFKFifFFifFMifMfiRRRRRRRRRR,2,21,1,)(.)
12、()()(借款受限制的情形借款受限制的情形 Black指出在不存在无风险利率的情形下,均值方差的有效组合具有如下3个特性:(1)由有效组合构成的任何组合一定位于有效边界上。(2)有效边界上的每一组合在最小方差边界的下半部(无效部分)都有一个与之不相关的“伴随”组合。由于“伴随”组合与有效组合是不相关的,因此被称为该有效组合的零贝塔组合。(3)任何资产的预期收益率都可以表示为任何两个有效组合预期收益率的线性函数。流动性问题传统的CAPM假定,证券交易是没有成本的。但在现实生活中,几乎素有证券交易都是有成本的,投资者自然喜欢流动性好的证券,流动性差的证券自然需要较高的回报率。套利定价模型套利定价模
13、型 因素模型 因素模型认为各种证券的收益率均受某个或某几个共同因素影响。各种证券收益率之所以相关主要是因为他们都会对这些共同的因素起反应。因素模型的主要目的就是找出这些因素并确定证券收益率对这些因素变动的敏感度。单因素模型单因素模型认为,证券收益率只受一种因素的影响。因素模型认为,随机变量与因素是不相因素模型认为,随机变量与因素是不相关的,且两种证券的随机变量之间也是关的,且两种证券的随机变量之间也是不相关的。不相关的。ittiiitFbar两因素模型认为,证券收益率取决于两个因素 ittitiiitFbFbar2211多因素模型多因素模型认为,证券i 的收益率取决于K个因素 应该注意的是,与
14、资本资产定价模型不同,因素模型不是资产定价的均衡模型。在实际运用中,人们通常通过理论分析确定影响证券收益率的各种因素,然后,根据历史数据,运用时间序列法、跨部门法、因素分析法等实证方法估计出因素模型。1122itiititikktitrab Fb Fb F套利组合 条件1:套利组合要求投资者不追加资金,即套利组合属于自融资组合。条件2:套利组合对任何因素的敏感度为零,即套利组合没有因素风险。条件3:套利组合的预期收益率应大于零。例子某投资者拥有一个3种股票组成的投资组合,3种股票的市值均为500万,投资组合的总价值为1500万元。假定这三种股票均符合单因素模型,其预期收益率分别为16%、20%
15、和13%,其对该因素的敏感度(bi)分别为0.9、3.1和1.9。请问该投资者能否修改其投资组合,以便在不增加风险的情况下提高预期收益率。例子我们令x1=0.1,则可解出x2=0.083,x3=0.183。由于0.881%为正数,因此我们可以通过卖出274.5万元的第三种股票(等于0.1831500万元)同时买入150万元第一种股票(等于0.11500万元)和124.5万元第二种股票(等于0.0831500万元)就能使投资组合的预期收益率提高0.881%。1230 xxx1230.93.11.90 xxx套利定价模型投资者套利活动是通过买入收益率偏高的证券同时卖出收益率偏低的证券来实现的,其结
16、果是使收益率偏高的证券价格上升,其收益率将相应回落;同时使收益率偏低的证券价格下降,其收益率相应回升。这一过程将一直持续到各种证券的收益率跟各种证券对各因素的敏感度保持适当的关系为止。单因素模型的定价公式 约束条件:1 12201211 122()()()nnnnnMaxLx rx rx rxxxb xb xb x1230nxxxx02211nnxbxbxb单因素模型APT定价公式 在均衡状态下:一定等于 代表因素风险报酬,即拥有单位因素敏感度的组合超过无风险利率部分的预期收益率。iibr100fr1两因素模型的定价公式 22110iiibbr多因素模型的定价公式 ikkiiibbbr2211
17、0资产定价模型的实证检验资产定价模型的实证检验 罗尔的批评罗尔的批评 1、CAPM只有一个可检验的假设,那就是市场组合是均值-方差有效的。2、该模型的其他所有运用,包括最著名的预期收益率与贝塔系数之间的线性关系都遵从市场模型的效率,因此都不是单独可以检验的。罗尔的批评罗尔的批评 3、对于任何的样本期收益率观测值,运用样本期的收益率和协方差(而不是事前的预期收益率和协方差)都可以找到无数的事后均值-方差有效组合。4、除非我们知道真正市场组合的准确构成,并把它运用于实证检验,否则我们就无法检验CAPM的对错。罗尔的批评罗尔的批评 5、运用S&P500等来代替市场组合会面临两大问题:首先,即使真正的
18、市场组合不是有效的,替代物也可能是有效的。相反,如果我们发现替代物不是有效的,我们也不能凭此认为真正的市场组合是无效的。再者,大多数替代物之间及其与真正的市场组合都会高度相关而不管他们是否有效,这就使得市场组合的准确构成看来并不重要。然而,运用不同的替代物自然会有不同的结论,这就是基准误差 罗尔的批评罗尔的批评Roll和Ross以及Kandel和Stambaugh将Roll的批评更推进了一步,认为在检验中否定平均收益率与系数存在正向关系只能说明在检验中所用的替代物无效,而不能否定预期收益率与系数之间的理论关系。他们还证明了,即使是高度分散的组合(如所有股票的等权重组合或市值加权组合)也可能不会
19、产生有意义的平均收益率与系数关系。系数的测度误差系数的测度误差 为了解决系数的测度误差问题,Black,Jensen和Scholes(BJS)率先对检验方法进行了创新,在检验中用组合而不用单个证券。Fama和MacBeth运用BJS的方法对CAPM进行了实证检验,结果发现,与股票平均收益存在显著关系的唯一变量是股票的市场风险,且存在着正值的线性关系,与股票的非系统性风险无关,但估计的SML仍然太平,截距也为正。由此可见,CAPM在方向上是正确的,但数量上不够精确。围绕收益率异常现象的争论围绕收益率异常现象的争论 80年代以来,越来越多的实证研究发现,除了值以外,其它一些因素,如上市公司规模、市
20、盈率(P/D)、财务杠杆比率等,对证券收益有很大影响。如市盈率较低的证券组合、小公司的股票、高股利收入的股票的收益率常高于根据资本资产定价模型计算的收益。这种现象被称为异常现象(Anomalies)。三因素模型Fama和French提出了由市场收益率、小股票收益率减大股票收益率(SMB)和高账面价值与市值比股票收益率减低账面价值与市值比股票收益率(HML)的三因素模型,并发现小股票和价值股的平均收益率都较高,而大股票和增长股的平均收益率都较低,即使经过贝塔系数调整后也是如此。六种解释在检验过程中运用更好的计量经济方法。提高估计贝塔系数的精确度。重新考虑Fama和French研究结果的理论基础和
21、实践意义。数据挖掘。回到单因素模型,考虑不可交易的资产和的周期行为。可变的波动率。股权溢价难题股权溢价难题 Mehra和Prescott计算了1889-1978年股票组合超额收益率,发现历史平均超额收益率如此之高,以致任何合理水平的风险厌恶系数都无法与之相称。这就是股权溢价难题(Equity Premium Puzzle)。两种解释预期收益率与实际收益率 Fama和French认为,在估计预期资本利得时,用股利贴现模型比根据实际平均收益率要可靠,理由有三:11950-1999年间实际平均收益率超过了公司投资的内部收益率。2用股利贴现模型进行估计的统计精确性要远高于根据历史平均收益率 3在计算单位风险报酬(夏普比率)时,用股利贴现模型远比根据实际收益率稳定。幸存者偏差 Jurion和Goetzmann收集了39个国家1926-1996年股票市场升值指数的数据,结果发现美国股市扣除通货膨胀后的真实收益率在所有国家中是最高的,年真实收益率高达4.3%,而其他国家的中位数是0.8%。