1、一:有理数概念、定义:1、大于0的数叫做正数。2、在正数前面加上负号“-”的数叫做负数。3、整数和分数统称为有理数。4、人们通常用一条直线上的点表示数,这条直线叫做数轴。5、在直线上任取一个点表示数0,这个点叫做原点。6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。8、正数大于0,0大于负数,正数大于负数。9、两个负数,绝对值大的反而小。10、有理数加法法则(1)同号两数相加,取相同的符号,并把绝对值相加。(2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较
2、小的绝对值,互为相反数的两个数相加得0。(3)一个数同0相加,仍得这个数。11、有理数的加法中,两个数相加,交换交换加数的位置,和不变。12、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。13、有理数减法法则减去一个数,等于加上这个数的相反数。14、有理数乘法法则两数相乘,同号得正,异号得负,并把绝对值向乘。任何数同0相乘,都得0。15、有理数中仍然有:乘积是1的两个数互为倒数。16、一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。17、三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。18、一般地,一个数同两个数的和相乘,等于把这个数分别同这
3、两个数相乘,再把积相加。19、有理数除法法则除以一个不等于0的数,等于乘这个数的倒数。20、两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。21、求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。在an中,a叫做底数,n叫做指数。22、根据有理数的乘法法则可以得出负数的奇次幂是负数,负数的偶次幂是正数。显然,正数的任何次幂都是正数,0的任何次幂都是0。23、做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。24、把一个大于10的数表示成a
4、10的n次方的形式(其中a是整数数位只有一位的数,n是正整数),使用的是科学计数法。25、接近实际数字,但是与实际数字还是有差别,这个数是一个近似数。26、从一个数的左边的第一个非0数字起,到末尾数字止,所有的数字都是这个数的有效数字。二:整式的加减概念、定义:1、都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。2、单项式中的数字因数叫做这个单项式的系数(coefficient)。3、一个单项式中,所有字母的指数的和叫做这个单项式的次数(degreeofamonomial)。4、几个单项的和叫做多项式(polynomial),其中,每个单项式叫做多项式的
5、项(term),不含字母的项叫做常数项(constantlyterm)。5、多项式里次数最高项的次数,叫做这个多项式的次数(degreeofapolynomial)。6、把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。三:一元一次方程概念、定义:1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知
6、数的等式方程。2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。6、把等式一边的某项变号后移到另一边,叫做移项。7、应用:行程问题:s=vt工程问题:工作总量=工作效率时间盈亏问题:利润=售价成本利率=利润成本100售价=标价折扣数10储蓄利润问题:利息=本金利率时间本息和=本金+利息四:图形初步认识概念、定义:1、我们把实物中抽象的各种图形统
7、称为几何图形。2、有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。3、有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。4、将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。5、几何体简称为体。6、包围着体的是面,面有平的面和曲的面两种。7、面与面相交的地方形成线,线和线相交的地方是点。8、点动成面,面动成线,线动成体。9、经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。简述为:两点确定一条直线(公理)。10、当两条不同的直线有一个公共点时,我
8、们就称这两条直线相交,这个公共点叫做它们的交点。11、点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。12、经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。简单说成:两点之间,线段最短。(公理)13、连接两点间的线段的长度,叫做这两点的距离。14、角也是一种基本的几何图形。15、把一个周角360等分,每一份就是1度的角,记作1;把一度的角60等分,每一份叫做1分的角,记作1;把1分的角60等分,每一份叫做1秒的角,记作1。16、从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。17、如果两个角的和等于90(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。18、如果两个角的和等于180(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19、等角的补角相等,等角的余角相等。