1、1.理论力学的研究对象和内容理论力学研究物体机械运动规律的科学。机械运动:物体在空间的位置随时间的变化。包括:车辆行使,机器的运转、水的流动、建筑物的振动。运动是物质存在的形式,它的范围很广:物体位置的变化、发光、发热、化学变化甚至人脑的思维等。平衡:是机械运动的特殊形式。-研究物体的受力分析、力系的等效替换(或简研究物体的受力分析、力系的等效替换(或简化)、建立各种力系的平衡条件的科学化)、建立各种力系的平衡条件的科学静力学静力学 -只从几何的角度来研究物体的运动(如轨迹、只从几何的角度来研究物体的运动(如轨迹、速度、加速度等),而不研究引起物体运动的物理速度、加速度等),而不研究引起物体运
2、动的物理原因。原因。运动学运动学 -研究受力物体的运动和作用力之间的关系。研究受力物体的运动和作用力之间的关系。动力学动力学 -2.理论力学发展简史 理论力学是以伽利略(Galileo A.D.1564-1642年)和牛顿(Newton A.D.1642-1727年)所总结的关于机械运动的基本定律为基础发展起来的,属于古典力学的范畴。实际上它的研究对象的速度必须远小于光速(300000 km/s),才足够准确。在这里有必要研究一下它的发展简史。-1 远在奴隶社会时代,我国劳动人民就积累了比较丰富的力学知识,如杠杆原理、功的原理、滚动磨擦的原理。我国古代的墨经是一部最早记述有关力学原理的著作。在
3、欧州,比墨经稍晚一些,相继出现了亚里士多德的“物理学”和阿基米德的“论比重”等著作,奠定了静力学的基础。在那个时期,出现争论的事很多,我们大家可能都还记得高中时学过的比萨斜塔前的实验,那个时候亚里士多德(Aristotle,B.C.384-322)认为物体下落的速度与其重量成正比,直到十七世纪,伽利略才推翻了这个错误的认识。还有太阳中心说及地球中心论等等许多的争论。-2 十六到十七世纪,力学开始形成一门独立的系统的学科,伽利略提出了加速度的概念,从而奠定了动力学的基础。牛顿在总结前人的研究成果后,写出了自然哲学之数学原理一书(1687年),对动力学作了系统的描述,提出了牛顿三定律,它是整个古典
4、力学的基础。-3 十八、十九世纪是理论力学发展成熟的时期,相继提出了重要的虚位移原理、达朗伯原理以及拉格朗日方程。在此基础上,产生了分析力学。进入二十世纪,由于新技术革命的需要,又相继产生了非线性振动、陀螺力学、飞行力学、弹道学等一系列分支力学。我国古代人民(十四世纪以前)在力学的发展上始终走在世界的前列,只是在近代封建社会的统治下,才变得比较落后。解放后,力学才又重新焕发出生机。-在力学的发展史上,我国不乏光辉的实例,公元前250年,李冰建成了至今闻名中外的都江堰,东汉的张衡发明了地动仪,隋代的李春建成的赵州桥,至今仍屹立着,已有一千三百多年历史。我们大家不要认为制造一座桥很简单,实际上它要
5、综合理论力学、材料力学、结构力学等一系列的知识。谈到这儿,我们不禁要谈到二次大战中的一个真实故事,当时德国的一支部队打胜仗后举行隆重的庆祝仪式,浩浩荡荡从一座桥上通过,结果还没走到中间桥就“轰”的一声塌了,事后查明是由于部队的步伐使桥发生了共振现象,使许多士兵遭到了水灾之苦。-岷江上的大型引水枢纽工程,也是现有世界上历史最长的无坝引水工程。始建于公元前256前251年。都江堰 -赵州桥(安济桥)591599年,跨度37.4米,采用拱高只有7米的浅拱-敞肩拱,敞肩拱的运用为世界桥梁史上的首创,并有“世界桥梁鼻祖”的美誉。-东汉时期,中国发生地震的次数是比较多的,为了测定地震方位,及时地挽救人民的
6、生命财产,公元126年,张衡在第二次担任太史令之后,就注意掌握收集地震的情报和记录,经过多年的潜心研究,终于在公元132年(东汉顺帝阳嘉元年),发明了世界上第一台测定地震方位的科学仪器候风地动仪。张衡与地动仪 -1056年建成,采用筒体结构和各种斗拱,900多年来经受过多次地震的考验。山西应县木塔 -桥梁的共振破坏点击图片可以播放影片点击图片可以播放影片 -塔科马(塔科马(Tacoma)桥风振致毁)桥风振致毁 1940年11月7日,美国华盛顿州塔科马桥因风振致毁。这一严重的桥梁事故,开始促使人们对悬索桥结构的空气动力稳定问题进行研究。该桥主跨长853.4m,全长1810.56m,桥宽11.9m
7、,而梁高仅1.3m。通过两年时间的施工,于1940年7月1日建成通车。但由于当时人们对柔性结构在风作用下的动力响应的认识还不深入,该桥的加劲梁型式极不合理(板式钢梁),导致在中等风速(19m/s)下结构就发生破坏。幸好在桥梁破坏之前封闭了交通。据说,在出事当天,一位记者把车停在桥上,并把一条狗留在车内。桥倒塌时,只有他本人跑到了桥台处。该桥破坏时,当地Tacoma报社的编辑Leonard Costsworth恰好路过,并用摄影机记录下一段珍贵的胶片。这才使得后人有机会一睹当年桥毁场面。当地的报纸以简洁的标题对这场事故作了报道,“损失:一座桥、一辆汽车、一条狗”。10年以后,才开始重新修建塔科马
8、桥。仍采用悬索桥型式,但加劲梁改为桁架式。新桥总长较旧桥长12m,于1950年10月14日建成通车。-1 由于我们是工科专业,而工科专业要较多地接触机械运动的问题,学好了理论力学,应用所学的其它知识,我们基本上能解决实际生活中的机械运动问题。2 理论力学是学习一系列后续课程的重要基础,理论力学是研究力学中最普通的最基本的规律,很多课程如材料力学、弹性力学、结构力学、流体力学、飞行力学、振动理论、断裂力学都要以理论力学的内容为基础。3.学习理论力学的目的 -3 随着科学技术的发展,交叉学科的地位也越来越重要。力学与其它学科的渗透形成了生物力学、爆炸力学、物理力学等边缘学科,这就需要我们有坚实的理
9、论力学基础。-4.力学的应用航天工程 核反应堆工程 航空工程 石油工程 机械工程 电子工程 土木工程 计算机工程 水利工程 其它工程领域理论力学、材料力学、结构力学、弹性力学、塑性力学、有限理论力学、材料力学、结构力学、弹性力学、塑性力学、有限单元法等。单元法等。-力学的应用力学的应用 航天工程航天工程 -力学的应用力学的应用 航天工程航天工程微小卫星发现号航天飞机 -力学的应用力学的应用 航空工程航空工程 -力学的应用力学的应用 机械工程机械工程 -力学的应用力学的应用 土木工程土木工程上海南浦大桥 -力学的应用力学的应用 土木工程土木工程 -力学的应用力学的应用 水利工程水利工程美国胡佛大
10、坝 -力学的应用力学的应用 水利工程水利工程长江三峡工程 -力学的应用力学的应用 核反应堆工程核反应堆工程 -力学的应用力学的应用 石油工程石油工程 -力学的应用力学的应用 计算机工程计算机工程 -静力学引言静力学引言 -静力学:静力学:研究物体的受力分析、力系的等效替换(或简化)、建研究物体的受力分析、力系的等效替换(或简化)、建立各种力系的平衡条件的科学立各种力系的平衡条件的科学 1 1、物体的受力分析物体的受力分析:分析物体(包括物体系)受:分析物体(包括物体系)受哪些力,每个力的作用位置和方向,并画出物体的受力哪些力,每个力的作用位置和方向,并画出物体的受力图图 2 2、力系的等效替换
11、(或简化)力系的等效替换(或简化):用一个简单力系等效:用一个简单力系等效代替一个复杂力系代替一个复杂力系 3 3、建立各种力系的平衡条件建立各种力系的平衡条件:建立各种力系的平衡:建立各种力系的平衡条件,并应用这些条件解决静力学实际问题条件,并应用这些条件解决静力学实际问题 -力力:物体间相互的机械作用,作用效果使物体的机械运动状态发:物体间相互的机械作用,作用效果使物体的机械运动状态发生改变生改变 力系:一群力力系:一群力.平衡平衡:物体相对惯性参考系(如地面)静止或作匀速直线运动:物体相对惯性参考系(如地面)静止或作匀速直线运动几个基本概念几个基本概念 刚体刚体:在力的作用下,其内部任意
12、两点间的距离始终保持不变:在力的作用下,其内部任意两点间的距离始终保持不变的物体的物体.力的三要素:大小、方向、作用点力的三要素:大小、方向、作用点平面汇交(共点)力系平面汇交(共点)力系平面平行力系平面平行力系平面力偶系平面力偶系平面任意力系平面任意力系空间汇交(共点)力系空间汇交(共点)力系空间平行力系空间平行力系空间力偶系空间力偶系空间任意力系空间任意力系力是矢量力是矢量 -第一章第一章 静力学公理和物体的受力分析静力学公理和物体的受力分析 -1-1 1-1 静力学公理静力学公理公理公理1 1 力的平行四边形法则力的平行四边形法则 作用在物体上同一点的两个力,可以合成为一个合作用在物体上
13、同一点的两个力,可以合成为一个合力。合力的作用点也在该点,合力的大小和方向,由这力。合力的作用点也在该点,合力的大小和方向,由这两个力为边构成的平行四边形的对角线确定。两个力为边构成的平行四边形的对角线确定。合力合力(合力的大小与方向合力的大小与方向)()(矢量和矢量和)21RFFF亦可用力三角形求得合力矢亦可用力三角形求得合力矢 -公理公理2 2 二力平衡条件二力平衡条件 使刚体平衡的充分必要条件使刚体平衡的充分必要条件21FF最简单力系的平衡条件最简单力系的平衡条件 作用在刚体上的两个力,使刚体保持平衡的必要和充分条作用在刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力的大小相等
14、,方向相反,且作用在同一直线上。件是:这两个力的大小相等,方向相反,且作用在同一直线上。-公理公理3 3 加减平衡力系原理加减平衡力系原理推理推理1 1 力的可传性力的可传性 作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用作用在刚体上的力是滑动矢量,力的三要素为大小、方向和作用线线 在已知力系上加上或减去任意的平衡力系,并不改变原力系对在已知力系上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。刚体的作用。作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。一点,并不改变该力对刚体的作用。-
15、推理推理2 2 三力平衡汇交定理三力平衡汇交定理 作用于刚体上三个相互平衡的力,若其中两个力的作作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则此三力必在同一平面内,且第三个力用线汇交于一点,则此三力必在同一平面内,且第三个力的作用线通过汇交点。的作用线通过汇交点。-公理公理4 4 作用和反作用定律作用和反作用定律 作用力和反作用力总是同时存在,同时消失,等值、作用力和反作用力总是同时存在,同时消失,等值、反向、共线,作用在相互作用的两个物体上反向、共线,作用在相互作用的两个物体上 在画物体受力图时要注意此公理的应用在画物体受力图时要注意此公理的应用 -公理公理5 5 刚化原理
16、刚化原理柔性体(受拉力平衡)柔性体(受拉力平衡)刚化为刚体(仍平衡)刚化为刚体(仍平衡)反之不一定成立反之不一定成立刚体(受压平衡)刚体(受压平衡)柔性体(受压不能平衡)柔性体(受压不能平衡)变形体变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,在某一力系作用下处于平衡,如将此变形体刚化为刚体,其平衡状态保持不变其平衡状态保持不变.-约束约束:对非自由体的位移起限制作用的物体对非自由体的位移起限制作用的物体.约束力约束力:约束对非自由体的作用力约束对非自由体的作用力约束力约束力大小大小待定待定方向方向与该约束所能阻碍的位移方向相反与该约束所能阻碍的位移方向相反作用点作用点接触处接触处1
17、-2 1-2 约束和约束力约束和约束力 -工程中常见的约束工程中常见的约束1.1.具有光滑接触面(线、点)的约束(光滑接触约束)具有光滑接触面(线、点)的约束(光滑接触约束)-光滑接触面约束 -光滑支承接触对非自由体的约束力,光滑支承接触对非自由体的约束力,作用在接触作用在接触处处;方向沿接触处的公法线并指向受力物体方向沿接触处的公法线并指向受力物体,故称为,故称为法向约束力,用法向约束力,用 表示表示NF -2.2.由柔软的绳索、胶带或链条等构成的约束由柔软的绳索、胶带或链条等构成的约束柔索只能受拉力,又称张力柔索只能受拉力,又称张力.用用 表示表示TF -柔索对物体的约束力沿着柔索背向被约
18、束物体柔索对物体的约束力沿着柔索背向被约束物体胶带对轮的约束力沿轮缘的切线方向,为拉力胶带对轮的约束力沿轮缘的切线方向,为拉力 -3.3.光滑铰链约束(径向轴承、圆柱铰链、固定铰链支光滑铰链约束(径向轴承、圆柱铰链、固定铰链支座等)座等)(1 1)径向轴承(向心轴承)径向轴承(向心轴承)约束特点:约束特点:轴在轴承孔内,轴为非自由体、轴在轴承孔内,轴为非自由体、轴承孔为约束轴承孔为约束 约束力约束力:当不计摩擦时,轴与孔在接触处为光滑接当不计摩擦时,轴与孔在接触处为光滑接触约束触约束法向约束力约束力作用在接触处,沿径向法向约束力约束力作用在接触处,沿径向指向轴心指向轴心 -当外界载荷不同时,接
19、触点会变,则约束力的当外界载荷不同时,接触点会变,则约束力的大小与方向均有改变大小与方向均有改变可用二个通过轴心的正交分力可用二个通过轴心的正交分力 表示表示yxFF,-(2 2)光滑圆柱铰链)光滑圆柱铰链 约束特点:由两个各穿孔的构件及圆柱销钉约束特点:由两个各穿孔的构件及圆柱销钉组成,如剪刀组成,如剪刀 -光滑圆柱铰链约束 -约束力:约束力:光滑圆柱铰链:亦为孔与轴的配合问题,与轴承一样,光滑圆柱铰链:亦为孔与轴的配合问题,与轴承一样,可用两个正交分力表示可用两个正交分力表示其中有作用反作用关系其中有作用反作用关系 一般不必分析销钉受力,当要分一般不必分析销钉受力,当要分析时,必须把销钉单
20、独取出析时,必须把销钉单独取出yCyCxCxCFFFF,-(3 3)固定铰链支座固定铰链支座约束特点:约束特点:由上面构件由上面构件1 1或或2 2 之一与地面或机架固定而成之一与地面或机架固定而成 约束力:与圆柱铰链相同约束力:与圆柱铰链相同 以上三种约束(径向轴承、光滑圆柱铰链、固定铰链以上三种约束(径向轴承、光滑圆柱铰链、固定铰链支座)其约束特性相同,均为轴与孔的配合问题,都可称支座)其约束特性相同,均为轴与孔的配合问题,都可称作光滑圆柱铰链作光滑圆柱铰链 -4.4.其它类型约束其它类型约束 (1 1)滚动支座)滚动支座 约束特点:约束特点:在上述固定铰支座与光滑固定平面之间装有光滑辊轴
21、而成在上述固定铰支座与光滑固定平面之间装有光滑辊轴而成 约束力:约束力:构件受到垂直于光滑面的约束力构件受到垂直于光滑面的约束力 -(2)(2)球铰链球铰链 约束特点:通过球与球壳将构件连接,构件可以绕球心任约束特点:通过球与球壳将构件连接,构件可以绕球心任意转动,但构件与球心不能有任何移动意转动,但构件与球心不能有任何移动 约束力:约束力:当忽略摩擦时,球与球座亦是光滑约束问题约当忽略摩擦时,球与球座亦是光滑约束问题约束力通过接触点束力通过接触点,并指向球心并指向球心,是一个不能预先确定的空间力是一个不能预先确定的空间力.可用三个正交分力表示可用三个正交分力表示 -(3 3)止推轴承)止推轴
22、承约束特点:约束特点:止推轴承比径向轴承多一个轴止推轴承比径向轴承多一个轴向的位移限制向的位移限制约束力:约束力:比径向轴承多一个轴向的约束力,亦有三个正交比径向轴承多一个轴向的约束力,亦有三个正交分力分力 AzAyAxFFF,-(5)(5)球铰链球铰链空间三正交分力空间三正交分力(6)(6)止推轴承止推轴承空间三正交分力空间三正交分力(2 2)柔索约束)柔索约束张力张力TF(4 4)滚动支座)滚动支座 光滑面光滑面NF(3 3)光滑铰链)光滑铰链,AyAxFF(1 1)光滑面约束)光滑面约束法向约束力法向约束力NF总结总结(7)(7)固定端固定端 -1-3 1-3 物体的受力分析和受力图物体
23、的受力分析和受力图 力学模型与力学简图力学模型与力学简图在受力图上应画出所有力,主动力和约束力(被动力)在受力图上应画出所有力,主动力和约束力(被动力)画受力图步骤:画受力图步骤:3.3.按约束性质画出所有约束(被动)力按约束性质画出所有约束(被动)力1.1.取所要研究物体为研究对象(分离体),画出其简图取所要研究物体为研究对象(分离体),画出其简图2.2.画出所有主动力画出所有主动力物体的受力分析和受力图物体的受力分析和受力图 -例例1-11-1画出简图画出简图画出主动力画出主动力画出约束力画出约束力碾子重为碾子重为 ,拉力为,拉力为 ,、处光滑处光滑接触,画出碾子的受力图接触,画出碾子的受
24、力图FABP解:解:-例例1-2 1-2 取屋架取屋架画出主动力画出主动力画出约束力画出约束力画出简图画出简图屋架受均布风力屋架受均布风力 (N/mN/m),),屋架重为屋架重为 ,画出屋架的受,画出屋架的受力图力图qP解:解:-例例1-3 1-3 取取 杆,其为二力构件,简称杆,其为二力构件,简称二力杆,其受力图如图二力杆,其受力图如图(b)(b)CD水平均质梁水平均质梁 重为重为 ,电动机,电动机重为重为 ,不计杆,不计杆 的自重,的自重,画出杆画出杆 和梁和梁 的受力图。的受力图。2PABCDCDAB1P解:解:-取取 梁,其受力图如图梁,其受力图如图 (c)(c)AB若这样画,梁若这样
25、画,梁 的受力的受力图又如何改动图又如何改动?AB 杆的受力图能否画杆的受力图能否画为图(为图(d d)所示?)所示?CD -例例1-4 1-4 不计三铰拱桥的自重与摩擦,不计三铰拱桥的自重与摩擦,画出左、右拱画出左、右拱 的受力图的受力图与系统整体受力图与系统整体受力图CBAB,右拱右拱 为二力构件,其受力为二力构件,其受力图如图(图如图(b b)所示)所示CB解:解:-系统整体受力图如图系统整体受力图如图(d d)所示)所示取左拱取左拱 ,其受力图如图其受力图如图(c c)所示)所示AC -考虑到左拱考虑到左拱 三个力作用下三个力作用下平衡,也可按三力平衡汇交定平衡,也可按三力平衡汇交定理
26、画出左拱理画出左拱 的受力图,如的受力图,如图(图(e e)所示)所示ACAC此时整体受力图如图(此时整体受力图如图(f f)所示所示 -讨论:若左、右两拱都考讨论:若左、右两拱都考虑自重,如何画出各受力虑自重,如何画出各受力图?图?如图如图(g g)(h h)(i i)-例例1-51-5不计自重的梯子放在光滑水不计自重的梯子放在光滑水平地面上,画出梯子、梯子平地面上,画出梯子、梯子左右两部分与整个系统受力左右两部分与整个系统受力图图绳子受力图如图(绳子受力图如图(b b)所示)所示解:解:-梯子左边部分受力图梯子左边部分受力图如图(如图(c c)所示)所示梯子右边部分受力图梯子右边部分受力图
27、如图(如图(d d)所示)所示 -整体受力图如图(整体受力图如图(e e)所示)所示提问:左右两部分梯子在提问:左右两部分梯子在 处,绳子对左右两部分梯子均处,绳子对左右两部分梯子均有力作用,为什么在整体受力图没有画出?有力作用,为什么在整体受力图没有画出?A -力学模型与力学简图力学模型与力学简图 对任何实际问题进行力学分析、计算时,都要将实际问对任何实际问题进行力学分析、计算时,都要将实际问题抽象成为力学模型,任何力学计算实际都是针对力学模型题抽象成为力学模型,任何力学计算实际都是针对力学模型进行的。进行的。例如对桥梁进行力学计算,实际上是指对这桥梁的力学例如对桥梁进行力学计算,实际上是指
28、对这桥梁的力学模型进行了计算。显然,将实际问题化为力学模型是进行力模型进行了计算。显然,将实际问题化为力学模型是进行力学计算所必须的重要而关键的一环,这一环进行的好坏,将学计算所必须的重要而关键的一环,这一环进行的好坏,将直接影响计算过程和计算结果。直接影响计算过程和计算结果。将实际问题化为力学模型的过程称为将实际问题化为力学模型的过程称为力学建模力学建模。由于理。由于理论力学中将物体视为刚体,因此其力学模型可以用简图来表论力学中将物体视为刚体,因此其力学模型可以用简图来表达,这类简图称为达,这类简图称为力学简图力学简图。-在建立力学模型时,要抓住关键、本质的方面,忽略在建立力学模型时,要抓住
29、关键、本质的方面,忽略次要的方面。次要的方面。例如:例如:忽略变形忽略变形刚体刚体三维问题三维问题平面问题平面问题几何形状几何形状圆形圆形作用在圆心作用在圆心重力重力 和力和力 的简化的简化PFA,B处约束力的简化处约束力的简化点接触点接触光滑接触光滑接触力学模型力学模型 -理论力学中力学模型常遇到的几个方面理论力学中力学模型常遇到的几个方面材料假设为均匀;材料假设为均匀;将物体视为刚体;将物体视为刚体;几何形状简化为圆柱、圆盘、板、杆及由它们组成的简单几何形状简化为圆柱、圆盘、板、杆及由它们组成的简单 形状;形状;受力简化为集中力、分布力;受力简化为集中力、分布力;接触简化为光滑铰链、光滑接触、柔索等。接触简化为光滑铰链、光滑接触、柔索等。-