1、2.1 两条直线的位置关系第二章 相交线与平行线导入新课讲授新课当堂练习课堂小结第1课时 对顶角、补角和余角学习目标1.理解对顶角、补角、余角的概念;2.掌握对顶角、补角、余角的性质,并能运用它们的 性质进行角的运算及一些实际问题.(重点、难点)观察下列图片,说一说直线与直线的位置关系.导入新课导入新课情境引入 生活中处处可见道路、房屋、山川、桥梁.在大自然的杰作和人类的创造物中,蕴含着无数的相交线和平行线.在同一平面内,两条直线的位置关系有相交和平行两种.若两条直线只有一个公共点,我们称这两条直线为相交线.在同一平面内,不相交的两条直线叫作平行线.如图,直线AB、CD相交于O,1和2有什么位
2、置关系?21ABCDO34讲授新课讲授新课对顶角的概念及性质一探究一:1.有公共顶点,2.两边互为反向延长线.请你观察图中1和2这组对顶角,你发现它们的大小有什么关系?21ABCDO探究二:1=2对顶角相等对顶角相等如图直线AB与CD相交于点O,1和3有公共顶点O,并且它们的两边互为反向延长线,这样的两个角叫做对顶角.2和4也是对顶角.对顶角:AOCBD1324总结归纳对顶角的性质:例1 下列各图中,1与2是对顶角的是()12C12DD12A12B典例精析方法总结:对顶角是由两条相交直线构成的,只有两条直线相交时,才能构成对顶角例2 如图,直线AB、CD,EF相交于点O,140,BOC110,
3、求2的度数.解:因为140,BOC110(已知),所以BOFBOC1 1104070.因为BOF2(对顶角相等),所以270(等量代换)注意:隐含条件“对顶角相等”.34 如果两个角的和等于180(平角),就说这两个角互为补角(简称互补).可以说3是4的补角或4是3的补角.定义:补角和余角的概念补角和余角的概念二21 如果两个角的和等于90(直角),就说这两个角互为余角(简称互余).可以说1是2的余角或2是1的余角.定义:2737117378517558148451351031390 x180 x 观察可得结论:同一个锐角的补角比它的余角大_.做一做90图图1 1N 2 2DC O1 13 3
4、4 4AB图图2 2 如图1,打台球时,选择适当的方向用白球击打红球,反弹后的红球会直接入袋,此时1=2,将图1简化成图2,ON与DC交于点O,DON=CON=900,1=2.补角和余角的性质补角和余角的性质三小组合作交流,解决下列问题:在图2中问题1:哪些角互为补角?哪些角互为余角?问题2:3与4有什么关系?为什么?问题3:AOC与BOD有什么关系?为什么?因为1=2,1+AOC=180,2+BOD=180,所以AOC=BOD.同角(等角)的补角相等N 2 2DC O1 13 34 4AB图图2 2因为1=2,1+3=90 ,2+4=90,所以 3=4.同角(等角)的余角相等归纳总结:同角(
5、等角)的补角相等,同角(等角)的余角相等.N 2 2DC O1 13 34 4AB图图2 2例3 如图,已知AOB在AOC内部,BOC90,OM、ON分别是AOB,AOC的平分线,AOB与COM互补,求BON的度数解:AOB与COM互补,AOBCOM180,即AOBBOMCOB180.COB90,AOBBOM90.OM是AOB的平分线,BOM AOB,即AOB AOB90,解得AOB60,AOCBOCAOB9060150.ON平分AOC得AON AOC 15075.由角的和差,BONAONAOB 756015.212121211.下列说法中,正确的有()对顶角相等相等的角是对顶角不是对顶角的两
6、个角就不相等不相等的角不是对顶角A1个 B2个 C3个 D0个B当堂练习当堂练习2.判断下列各图中1和2是否为对顶角,并说明 理由?1212121212123.图中给出的各角,哪些互为补角?10o30o60o80o100o120o150o170o4.图中给出的各角,哪些互为余角?15o24o66o75o46.2o43.8oABCDO5.如图,已知AOB=90,AOC=BOD,则与 AOC互余的角有_.BOC和 AOD6.如图已知:直线AB与CD交于点O,EOD=900,回答下列问题:(1)AOE的余角是 ;补角是 ;(2)AOC的余角是 ;补角是 ;对顶角是 ;CABDOEAOCBOEAOEBOCBOD 7.如图,COD=EOD=90,C、O、E在一条直线上,且2=4,请说出1与3之间的关系?并试着说明理由?O1与3相等(等角的余角相等).8.若一个角的补角等于它的余角的4 倍,求这个角的度数.解:设这个角是x,则它的补角是(180 x),余角是(90 x).根据题意,得180 x=4(90 x).解得 x=60.答:这个角的度数是60.9.要测量两堵墙所成的角的度数,但人不能进入 围墙,如何测量?ABOCD你能想到几种方法?1290 12180 同角或等角的余角相等同角或等角的补角相等(1 902)(11802)对顶角性质:对顶角相等.课堂小结课堂小结