1、勾股定理的历史大家好1v勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为毕达哥拉斯命题的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名
2、。大家好21.商高定理v中国最早的一部数学著作周髀算经的开头,记载着一段周公向商高请教数学知识的对话:周公问:我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?商高回答说:数的产生来源于对方和圆这些形体的认识。其中有一条原理:当直角三角形矩得到的一条直角边勾等于3,另一条直角边股等于4的时候,那么它的斜边弦就必定是5。这个原理是大禹在治水的时候就总结出来的呵。如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是
3、勾股定理的一个应用特例。所以现在数学界把它称为勾股定理是非常恰当的。大家好3v在稍后一点的九章算术一书中(约在公元50至100年间),勾股定理得到了更加规范的一般性表达。书中的勾股章说;“把勾和股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦。”。九章算术系统地总结了战国、秦、汉以来的数学成就,共收集了246个数学的应用问题和各个问题的解法,列为九章,可能是所有中国数学著作中影响最大的一部。大家好4v中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。v赵爽创制了一幅“勾股圆方图”,用形数结合得到
4、方法,给出了 勾股定理的详细证明大家好5赵爽 东汉末至三国时代吴国人为周髀算经作注,著有勾股圆方图说 v在这幅“勾股圆方图”中,以弦为边长得到正方形ABDE是由4个相等的直角三角形再加上中间的那个小正方形组成的。每个直角三角形的面积为ab/2;中间的小正方形边长为b-a,则面积为(b-a)2。于是便可得如下的式子:4(ab/2)+(b-a)2=c2 化简后便可得:a2+b2=c2 大家好6v赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。
5、大家好7v稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,刘徽用了“出入相补法”即剪贴证明法,他把勾股为边的正方形上的某些区域剪下来(出),移到以弦为边的正方形的空白区域内(入),结果刚好填满,完全用图解法就解决了问题大家好8毕达哥拉斯定理Pythagoras theorem(公元前572?公元前497?)v在国外,相传勾股定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。因此又称此定理为“毕达哥拉斯定理”。法国和比利时称它为“驴桥定理”,埃及称它为“埃及三角形”等。但他们发现的时间都比我国要迟得多大家好9v著名的希腊数学家欧几里得(Euclid,公元前330公元前275)在巨著几何原本(第卷,命题47)中给出一个很好的证明。大家好10“总统”证法-伽菲尔德 v伽菲尔德(James A.Garfield;1831 1881)1881 年成為美國第 20 任總統 1876 年提出有關證明 大家好111876年4月1日,伽菲尔德在新英格兰教育日志上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统。”证法大家好12大家好13结束大家好14