1、【 精品教育资源文库 】 有理数的乘方 教学目标 知识与技能 在现实背景中,理解有理数的乘方的意义;掌握有理数的乘 方运算 . 过程与方法 体会有理数乘方运算的符号法则,体会类比,归纳规律的方法 . 情感价值观 通过师生活动 、学生自我探究、让学生充分参与到数学学习过程中来,体验数学活动充满着探索性和创造性 . 教学重点 理解有理数的乘方的意义,正确地进行有理数的乘方运算 . 教学难点 正确地进行有理数的乘方运算,正确确定幂的符号 . 教学方法 小组讨论、合作 媒体资源 教 学 过 程 教学流程 教 学 活 动 学生活动 设计意图 创 设情境引入新知 在小学,我们已经学习过 ?a a ,记作
2、 2a ,读作 a 的平方(或 a 的二次方); ?a a a? ,记作 3a ,读作 a 的立 方(或 a 的三次方); 那么, ?a a a? a? 可以记作什么?读作什么? ?a a a? a? a? 呢? ? ?个n aaaa ? ( n 是正整数)呢? 在 小学对于字母 a 我们只能取正数 .进入中学后,我们学习了有理数那么 a 还可以取哪些数呢?请举例说明 . 引导学生复习正方形的面积和正方体的体积,进而引入2a 与3a 都与乘法运算有从实际问题中发现问题,解决问题,并引入新的问题 . 【 精品教育资源文库 】 关 . 探 究新知 1.求 n 个相同因数的积的运算叫做乘方 . 2
3、.乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数 . na 一般地,在 na 中, a 取任意有理数, n 取正整数 . 注: (1)乘方是一种运算,幂是乘方运算的结果 .当 na看作 a 的 n 次方的结果时,也可读作 a 的 n 次幂 . (2)当指数为 1 时,指数 1 通常不写 . 3.分析乘方的意义 102 表示 _个 _相乘 ; 24 表示 _个 _相乘 ; 53 表示 _个 _相乘 ; 53 与 3 5 有没有区别?如有,是 什么区别? 学生独立分析每个式子 的 数学意义 注意引导学生理解乘方的数学意义 .注意区分 53与35等 . 应用新知 例题:分别指出下列各式
4、的指数和底数并进行计算 (一)计算 ( 1) 43 ( 2) 24( 3) 0.12 (二) 计算 ( 1)( -4) 3 ( 2) ( -2) 4( 3)( -0.1) 2 (三) 计算 ( 1) 03 ( 2) 04 ( 3) 06 (四) 用计算器计算 (1)( -8) 5 (2 )( -3) 6 引导学生总结出: 幂的符号确定法则 使学生体会由具体的计算抽象到法则的过指数 底数 幂 【 精品教育资源文库 】 通过上述的计算你能猜出下列空白处应该填什么吗? ( 1)正数的任何次幂都是 ( 2)负数的奇次幂是 负数的偶次幂是 ( 3) 0 的任何正整数次幂都是 . 程 . 基础过关 ;计算: 710 )1()2()1()1(.1 ? ; 333 1.0)5()5()4(8)3( ? .)10()8()10()7(21)6( 544 ? ? ; 检查学生对基础知识的掌握情况 . 课堂小结 ( 1) 乘方的概念; ( 2)乘方的意义,主要是与乘法分开; ( 3)乘方的一些简单特点; 作业布置 教学反 思 -温馨提示: - 全套 新人教版七年级上册数学教案与教学设计 , 欢迎点击下方按钮下载! 【 精品教育资源文库 】 还有 配套的精品课件,公开课课件,各种测试题和导学案 等资料供你选用! 请点此到 下载本文全套资料