1、第六节复习 目录 上页 下页 返回 结束 一、空间曲线的切线与法平面一、空间曲线的切线与法平面二、曲面的切平面与法线二、曲面的切平面与法线 多元函数微分学的几何应用 第八章 复习复习:平面曲线的切线与法线已知平面光滑曲线)(xfy),(00yx切线方程0yy 法线方程0yy 若平面光滑曲线方程为,0),(yxF),(),(ddyxFyxFxyyx故在点),(00yx切线方程法线方程)(0yy),(00yxFy)(),(000 xxyxFx0)(00 xxxf)()(100 xxxf在点有有因 0)(),(000yyyxFx),(00yxFy)(0 xx 机动 目录 上页 下页 返回 结束 一、
2、一、空间曲线的切线与法平面空间曲线的切线与法平面过点 M 与切线垂直的平面称为曲线在该点的法法机动 目录 上页 下页 返回 结束 位置.TM空间光滑曲线在点 M 处的切线切线为此点处割线的极限平面平面.点击图中任意点动画开始或暂停1.曲线方程为参数方程的情况曲线方程为参数方程的情况)(,)(,)(:tztytxzzzyyyxxx000,t上述方程之分母同除以得令,0t切线方程切线方程000zzyyxx),(0000zyxMtt对应设),(0000zzyyxxMttt对应)(0t)(0t)(0t机动 目录 上页 下页 返回 结束 TMM:的方程割线MM)(00 xxt此处要求)(,)(,)(00
3、0ttt也是法平面的法向量,切线的方向向量:称为曲线的切向量切向量.)()(00yyt0)(00zzt如个别为0,则理解为分子为 0.机动 目录 上页 下页 返回 结束 M不全为0,)(,)(,)(000tttTT因此得法平面方程法平面方程 说明说明:若引进向量函数)(,)(,)()(ttttr,则 为 r(t)的矢端曲线,0t而在处的导向量)(,)(,)()(0000ttttr就是该点的切向量.o)(trTzyxo例例1.求圆柱螺旋线 kzRyRx,sin,cos2对应点处的切线方程和法平面方程.,2时当切线方程 Rx法平面方程xR022kzkxR即002RykRzRxk即解解:由于,sin
4、Rx0Ry kkz2,cosRy,kz),0(20kRM对应的切向量为0)(2kzk在机动 目录 上页 下页 返回 结束),0,(kRT,故2.曲线为一般式的情况曲线为一般式的情况光滑曲线0),(0),(:zyxGzyxF当0),(),(zyGFJ)()(xzxyxydd曲线上一点),(000zyxMxyz,且有xzdd,),(),(1xzGFJ,),(),(1yxGFJ 时,可表示为处的切向量为 MMyxGFJxzGFJ),(),(1,),(),(1,1机动 目录 上页 下页 返回 结束)(,)(,100 xxT 000zzyyxxMzyGF),(),(则在点),(000zyxM切线方程切线
5、方程法平面方程法平面方程有MzyGF),(),(MxzGF),(),(MyxGF),(),()(0 xx MyxGF),(),(MxzGF),(),()(0yy 0)(0 zz或机动 目录 上页 下页 返回 结束 MMMyxGFxzGFzyGFT),(),(,),(),(,),(),(0)()()()()()(000MGMGMGMFMFMFzzyyxxzyxzyx也可表为)(),(),()(),(),(00yyMxzGFxxMzyGF法平面方程法平面方程0)(),(),(0zzMyxGF机动 目录 上页 下页 返回 结束 例例2.求曲线0,6222zyxzyx在点M(1,2,1)处的切线方程与
6、法平面方程.MzyGF),(),(解解 令,222zyxGzyxF则切向量;0),(),(MxzGFMzy1122Mzy)(2;6xyz机动 目录 上页 下页 返回 结束 6),(),(MyxGF)6,0,6(T法平面方程0)1(6)2(0)1(6zyx即0 zx机动 目录 上页 下页 返回 结束 切线方程121zyx即0202yzx0660),(:zyxF二、二、曲面的切平面与法线曲面的切平面与法线 设 有光滑曲面通过其上定点),(000zyxM0tt 设对应点 M,)(,)(,)(000ttt切线方程为)()()(000000tzztyytxx不全为0.则 在,)(,)(,)(:tztyt
7、x且点 M 的切向量切向量为任意引一条光滑曲线MT下面证明:此平面称为 在该点的切平面切平面.机动 目录 上页 下页 返回 结束 上过点 M 的任何曲线在该点的切线都在同一平面上.)(,)(,)(000tttTMT证:机动 目录 上页 下页 返回 结束 在 上,)(,)(,)(:tztytx0)(,)(,)(tttF,0处求导两边在tt,0Mtt对应点注意)(0t0),(000zyxFx),(000zyxFy),(000zyxFz)(0t)(0t得)(,)(,)(000tttT),(,),(,),(000000000zyxFzyxFzyxFnzyx令nT 切向量由于曲线 的任意性,表明这些切线
8、都在以为法向量n的平面上,从而切平面存在.n)(),(0000 xxzyxFx曲面 在点 M 的法向量法向量法线方程法线方程 000zzyyxx)(),(0000yyzyxFy0)(,(0000zzzyxFz切平面方程切平面方程),(000zyxFx),(000zyxFy),(000zyxFzMTn),(,),(,),(000000000zyxFzyxFzyxFnzyx复习 目录 上页 下页 返回 结束)(),(000 xxyxfx曲面时,),(yxfz zyxfzyxF),(),(则在点),(zyx故当函数),(yxf),(00yx1),(),(0000000zzyxfyyyxfxxyx法线
9、方程法线方程,yyfF 1zF令有在点),(000zyx特别特别,当光滑曲面 的方程为显式 在点有连续偏导数时,)(),(000yyyxfy0zz,xxfF 切平面方程切平面方程机动 目录 上页 下页 返回 结束,法向量法向量用2211cosyxff将),(,),(0000yxfyxfyx,yxff法向量的法向量的方向余弦:方向余弦:表示法向量的方向角,并假定法向量方向.为锐角则分别记为则,1cos,1cos2222yxyyxxffffff向上,)1,),(,),(0000yxfyxfnyx复习 目录 上页 下页 返回 结束 例例3.求球面3632222zyx在点(1,2,3)处的切平面及法线
10、方程.解解:3632),(222zyxzyxF所以球面在点(1,2,3)处有:切平面方程切平面方程)1(2x03694zyx即法线方程法线方程321zyx)2(8y0)3(18z149法向量令机动 目录 上页 下页 返回 结束)6,4,2(zyxn)18,8,2()3,2,1(n例例4.确定正数 使曲面zyx222zyx在点),(000zyxM解解:二曲面在 M 点的法向量分别为二曲面在点 M 相切,故000000000zyxyzxxzy0 x202020zyx又点 M 在球面上,32202020azyx故于是有000zyx2a相切.333a与球面机动 目录 上页 下页 返回 结束,),(00
11、00001yxzxzyn),(0002zyxn 21/nn,因此有20y20z21.空间曲线的切线与法平面空间曲线的切线与法平面 切线方程 000zzyyxx法平面方程)(00 xxt1)参数式情况.)()()(:tztytx空间光滑曲线切向量内容小结内容小结)(0t)(0t)(0t)()(00yyt0)(00zzt机动 目录 上页 下页 返回 结束)(,)(,)(000tttT切线方程法平面方程MMMyxGFzzxzGFyyzyGFxx),(),(),(),(),(),(000空间光滑曲线0),(0),(:zyxGzyxFMzyGF),(),(切向量2)一般式情况.,),(),(MzyGF,
12、),(),(MxzGFMyxGF),(),()(0 xx MxzGF),(),()(0yy MyxGF),(),(0)(0 zz机动 目录 上页 下页 返回 结束 T空间光滑曲面0),(:zyxF曲面 在点法线方程法线方程),(0000zyxFxxx),(0000zyxFyyy),(0000zyxFzzz)(),()(),(00000000yyzyxFxxzyxFyx1)隐式情况.的法向量法向量),(000zyxM0)(,(0000zzzyxFz切平面方程切平面方程2.曲面的切平面与法线曲面的切平面与法线机动 目录 上页 下页 返回 结束),(,),(,),(000000000zyxFzyxF
13、zyxFnzyx空间光滑曲面),(:yxfz)(),()(),(0000000yyyxfxxyxfzzyx切平面方程切平面方程法线方程法线方程1),(),(0000000zzyxfyyyxfxxyx,1cos,1cos2222yxyyxxffffff2)显式情况.法线的方向余弦方向余弦2211cosyxff法向量法向量机动 目录 上页 下页 返回 结束)1,(yxffn思考与练习思考与练习1.如果平面01633zyx与椭球面相切,提示提示:设切点为,),(000zyxM则223yx.求000226zyx3301633000zyx163202020zyx2机动 目录 上页 下页 返回 结束 162 z(二法向量平行)(切点在平面上)(切点在椭球面上)证明 曲面)(xyfxz 上任一点处的切平面都通过原点.提示提示:在曲面上任意取一点,),(000zyxM则通过此0zz)(0 xxxzM)(0yyyzM2.设 f(u)可微,第七节 目录 上页 下页 返回 结束 证明原点坐标满足上述方程.点的切平面为 3.证明曲面0),(ynzymxF与定直线平行,.),(可微其中vuF证证:曲面上任一点的法向量,1F,)()(21nFmF )2F取定直线的方向向量为,m,1)n则(定向量)故结论成立.的所有切平面恒机动 目录 上页 下页 返回 结束(n(l,0nl