1、 (surface enhanced Raman spectroscopy)SERSRaman spectroscopy:high characteristic good spatial resolution(micro Raman)minimal sample preparation all solvents can be usedbut:biological samples often show high fluorescence biological molecules appear often at low concentration levelessential oil10 mmRa
2、mansilver colloidsM.x piperita514.5 nm200015001000500Wavenumber/cm-1Raman Intensity 10-8 M10-7 M10-6 M10-5 M10-3 M10-2 M10-1 M15001000500Raman IntensityRamanWavenumber/cm-115001000500Wavenumber/cm-1 Raman IntensitySERS NHNNNNH2EOmetal colloidexcitationdetectionSERSmoleculeSERS:Excitation of plasmon
3、resonances in Ag(Au or Cu)nanoparticlesRaman spectroscopy utilizes optical properties of nanostructuresWavelength nmSCS nmJ.Kottmann et al.,IFH Field Theory Group,ETH ZrichAg,Au or Cu Wavelength/nmScattering Cross sectionFieldenhancementSERS:Raman spectroscopy utilizes optical properties of nanostru
4、cturesJ.Kottmann et al.,IFH Field Theory Group,ETH ZrichWavelength nmSCS nm*10Scattering Cross sectionWavelength/nmFieldenhancementSERS:Raman spectroscopy utilizes optical properties of nanostructures20 nmJ.Kottmann et al.,IFH Field Theory Group,ETH ZrichAg,Au or Cu Fieldenhancement40020010050201052
5、10.50.2Scattering Cross sectionWavelength/nmTypical SERS media 不同形状金纳米粒子的表面增强拉曼光谱 自组装好的不同形状的金纳米粒子的硅片浸没在20mM NaSCn 的溶液里,取出后测量其SERS信号以以SCN-作为探针分子作为探针分子,绿光绿光(51415nm)作为作为激发光波长得到的激发光波长得到的SERS谱图谱图具有较高SERS 活性的粗糙铂电极的STM(a)和镍纳米线阵列的A FM(b)图像各种过渡金属表面上吸附的吡啶在最强峰各种过渡金属表面上吸附的吡啶在最强峰电位下的表面增强拉曼谱图电位下的表面增强拉曼谱图Rayleigh
6、 LimitNear-field resolutionL.Novotny and C.Hafner,Phys.Rev.E 50(1994).AluminumHE11250 nm160 nm pulled etched/old etched/newTransmission:0.0001%0.1%Stckle et al.,Appl.Phys.Lett.75,161(1999)Raman intensity of water stretching vibration vs.the distance covered by the piezo translator Raman spectral shi
7、ft of water stretching vibration vs the distance covered by the piezo translatorHeterogeneous CatalysisHeterogenous CatalysisCorrelation of Topography and Spectra500 nmTopography+3 H2?PdC.Fokas and V.Deckert,Appl.Spectrosc.56,192(2002)SampleSingle SERS active particleAFM cantileverIllumination/colle
8、ction opticsR.Stckle,Y.D.Suh,V.Deckert,R.Zenobi,Chem.Phys.Lett.,2000,318,131.十四 拉曼光谱的主要应用从拉曼光谱获取的信息从拉曼光谱获取的信息characteristic Raman peakComposition and structure of materialchanges in frequency of Raman peakstress/strain state Crystal sizepolarization of Raman peakcrystal(molecule)symmetry and orienta
9、tionwidth of Raman peakquality of crystal(crystal size)不同的物质,其拉曼谱是不同的,就象人的指纹一样,因此拉曼光谱可用于物相的分析与表征。本研究工作的碉楼 Wavenumber(cm-1)123893045541087714465282(a)2004006008001000 45 3464206388980100410871010490714282(b)MicroRaman spetra of yellow fragmentCaCO3goethite K2Ca(SO4)2CaSO4quartz 2004006008001000120010
10、000200003000040000 Intensity(a.u.)Wavenumber(cm-1)552615348280544GreenBlue1087Raman spetra of Blue and green fragmentsCr2O3 Lazurite 青金石青金石Fig.1 The picture of the Ming Yongle Blue and White porcelain.200400600800100012001400120014001600180020002200240026002800300032003400360038004000Intensity Raman
11、 Shift(cm-1)永乐青花瓷唐寿州窑黄釉瓷Fig.2 The Raman Spectrum of glazeSiO4四面体的Si-O弯曲振动SiO4四面体的Si-O拉伸振动这两个峰的面积比(Ip=A500/A1000)与陶瓷的烧成温度相关联Ip越大,烧成温度越高Ip0.9Ip=0.8青花彩上发现有较多的黑色的网状斑点200400600800200040006000Intensity(a.u.)Raman Shift(cm-1)662302Fig.3 The Raman spectrum of black reticulation spot on the blue colour of Bl
12、ue and white porcelain.662,302 Fe3O4青花彩中的黄色斑点3006009006000900012000Intensity(a.u.)R am an S hift(cm-1)662224291407Fig.4 The Raman spectrum of yellow spot on the blue colour of Blue and White porcelain.224,291,407 Fe2O3662,Fe3O4青花彩中黑色颗粒状斑点300400500600700600080001000012000Intensity(a.u.)Raman Shift(cm
13、-1)547584628Fig.5 The Raman spectrum of black spot on the blue colour of Blue and white porcelain.584,628 Mn2O3547 MnO在还原气氛下,青花料中的锰应趋向于形成Mn3O4青花彩中黑色条纹状斑点3006009001200180021002400Intensity(a.u.)Ram an Shift(cm-1)692Fig.6 The Raman spectrum of wirelike black spot on the blue colour of Blue and White p
14、orcelain.692,522,488 Co3O4钴是青花料的主要显色元素,但在青花彩中发现氧化钴的结晶尚属首次釉中白色结晶物的照片300600900120020004000Intensity(a.u.)Raman Shift(cm-1)953970Fig.7 The Raman spectrum of white crystal grain in the glaze位于970 和953 cm-1的峰分别属于磷酸钙和硅酸钙,说明该釉是以CaO为主要助熔剂,属于石灰釉类而磷酸钙的形成则可能是在釉料中加有草木灰之类的植物灰料Raman spectra of doped CNTs100015002
15、0002500300005001000150020002500aD*GD2655.715841331Intensity/a.u.Raman Shift/cm-110002000300040005001000150020002500300015921340D*bGDRaman Shift/cm-1Intensity/a.u.0100020003000400005001000150020002500cRaman Shift/cm-1D*GD1335.81583.4Intensity/a.u.100015002000250030000500100015002000dRaman Shift/cm-1D
16、*GD1336.51581.0Intensity/a.u.un-dopedGa-dopedN-dopedN/B-codoped拉曼光谱在催化中的应用拉曼光谱在催化中的应用 拉曼光谱能提供催化剂本身以及表面上物种拉曼光谱能提供催化剂本身以及表面上物种的结构信息,这是认识催化剂和催化反应最为的结构信息,这是认识催化剂和催化反应最为重要的信息。重要的信息。拉曼光谱较容易实现原位条件下拉曼光谱较容易实现原位条件下 (高温、高压,高温、高压,复杂体系复杂体系)的催化研究。的催化研究。拉曼光谱可以用于催化剂制备的研究,特别是拉曼光谱可以用于催化剂制备的研究,特别是可以对催化剂制备过程从水相到固相的实时研究
17、。可以对催化剂制备过程从水相到固相的实时研究。拉曼光谱可以实现时间分辨动力学和动态拉曼光谱可以实现时间分辨动力学和动态学的研究。学的研究。No active sites;less shape selectivity Possible effect in regioselectivity and enantioselectivity 介孔材料是目前材料领域发展极为迅速的一个方向,但介孔材料是目前材料领域发展极为迅速的一个方向,但介孔材料很少应用于催化,因为缺乏催化活性中心介孔材料很少应用于催化,因为缺乏催化活性中心 在介孔材料中引入活性中心和表征活性中心是目前催化在介孔材料中引入活性中心和表征活
18、性中心是目前催化领域的前沿研究方向领域的前沿研究方向Micropore,20 Mesopore,20150 Acidic sites;shape selectivity Less active sites for oxidation and hydrogenation 催化剂中过渡金属中心的催化剂中过渡金属中心的电荷转移跃迁吸收电荷转移跃迁吸收/nm200300400500MOOOOMOOOOMOOOOMOOOOOOMOOOOO(MOx)nBulk oxideMOOOOSiSiSiSiO(2p)Ti(3d)O(2p)Fe(3d)O(2p)V(3d)220 nm250 nm280 nmAbsor
19、banceReference:MoxOyn-TS-1 催化剂和选择氧化催化剂和选择氧化SiO2TiTS-1H2O2ONOHRORRCRORCHROH+RH2CROHOHOHOHOH+OHNH3+Framework Ti 2%TiO2TS-1TS-1 的紫外共振拉曼光谱的紫外共振拉曼光谱 ex=244 nmOTiSiO OOSiO OOOOOTS-1TS-1 的紫外共振拉曼光谱的紫外共振拉曼光谱紫外拉曼谱峰的归属紫外拉曼谱峰的归属123456dcba Intensity(a.u)2 theta(degree)Ti-SBA-15Ti-SBA-15的紫外共振拉曼光谱的紫外共振拉曼光谱50010001
20、500970800607483Intensity/A.U.1110 RamanShift/cm-1Si/Ti=400Si/Ti=50Si/Ti=200Si/Ti=100Si/Ti=20SBA-15 ex=244 nm0.00.20.40.60.81.0Volume Adsorbed(cm3/g,STP)R elative Pressure(P/P0)Framework sitein TS-11125 cm-1 Isolated site in mesoporous materials1100-1110 cm-1 Isolated site on SiO21085 cm-1 OOTiOHOHSi
21、O2TiOOSiOSiOTiOOOOSiSiSiSiOOOOOOOOOOOOTiOOOOHOOTiOHOHTiOSiO2SiO2SilicaliteOOO1125 cm-11085 cm-11100-1110 cm-1TS-1Grafted Tion SiO2Ti-MCM-41,Ti-SBA-15Post-synthesizedTi in silicalites and ZSM-51125 cm1125 cm-1-1 谱峰的位置对谱峰的位置对TiTi的配位环境非常敏感的配位环境非常敏感Fe/ZSM-5 催化剂中的多种活性物种催化剂中的多种活性物种Fe2O3Fe Species:1)Framew
22、ork Fe,2)Extraframework Fe a)Isolated Fe b)Oligomer Fe3)Nanoparticle FeOx物种极其复杂物种极其复杂结构鉴定困难结构鉴定困难50010001500290Intensity/A.U.111011651005800380516 RamanShift/cm-1 ex=244 nm ex=325 nmUV Raman spectre of Fe-silicalite(Si/Fe=100)with different excitation lines 利用拉曼共振效应检测利用拉曼共振效应检测Fe-ZSM-5Fe-ZSM-5中的骨架铁物
23、种中的骨架铁物种50010001500 ex=244 nm800380100511675161110 Intensity/A.U.RamanShift/cm-1From 1110 cm-1 bandFrom 516 cm-1 band0.006(Fe/Si)0.020.010.050.025Fe/Si molar ratio分子筛中骨架位铁物种的最大分子筛中骨架位铁物种的最大含量为含量为0.0100.010(铁硅摩尔比铁硅摩尔比)紫外拉曼光谱对紫外拉曼光谱对Fe-silicaliteFe-silicalite骨架铁物种的半定量分析骨架铁物种的半定量分析00.0050.010.0150.020.
24、025Fe/Si RatioI(520cm-1)/I(380 cm-1)Framework species are formed first,then the extraframework species appear.5001000150011651005520290800380Intensity/A.U.RamanShift/cm-1Fe/Si=0.025 ex=325 nmFe/Si=0.02Fe/Si=0.01Fe/Si=0.005Fe/Si=0.0025Fe/Si=0.01 利用拉曼共振效应检测利用拉曼共振效应检测Fe-ZSM-5Fe-ZSM-5中骨架外铁物种中骨架外铁物种Fe-si
25、licalite 紫外拉曼谱峰的归属紫外拉曼谱峰的归属 ex=244 nm516,1110 cm-1 ex=325 nm520,1005,1115,1165 cm-1FeOOOOSiSiSiSiOFeSiOSiOOOOOOOOFeO(H)FrameworkExtraframeworkFeOOOOSiSiSiSi1110 cm-1 Framework iron in Fe-ZSM-51080-1100 cm-1 Framework iron in Fe-SBA-15紫外拉曼谱峰的归属紫外拉曼谱峰的归属Assignment of UV Raman bands for extraframework
26、iron species formed at low iron concentrationFe-silicalite:520,1005,1165 cm-1Fe-Al-SBA-15:510,1140 cm-1OFeSiOSiOOOOOOOOFeO(H)OAlSiOSiOOOOOOOOFeO(H)OAlSiOSiOOOOOOOOFeO(H)OGaSiOSiOOOOOOOOFeO(H)Raman band around 1140 cm-1 exited by 325 nm laser is attributed to the extraframework iron species associate
27、d with framework Al,Ga or Fe atomsOFeSiOSiOOOOOOOOFeO(H)Fe-SBA-15Fe-AlSBA-15Fe-GaSBA-15http:/ZrOZrO2 2 的晶相结构的晶相结构Temperature for phase transformationm-ZrO2 t-ZrO2950-1200oCt-ZrO2 c-ZrO22370oCMelting point2500-2600oCmonoclinic tetragonalcubic m-ZrOm-ZrO2 2 and t-ZrO and t-ZrO2 2 的特征拉曼光谱的特征拉曼光谱1002003
28、00400500600700800900 474613634376339305220180640462149312270IntensityRaman Shift/cm-1m-ZrO2(cm-1)176,187,220,305,340,376,474,510,536,558,613,634t-ZrO2(cm-1)149,270,313,462,600,640monoclinictetragonal 对于单斜相对于单斜相(m),谱峰谱峰474 cm-1强于强于634 cm 1,而四方相而四方相(t)恰好相反。恰好相反。单斜相的拉曼谱图中,在单斜相的拉曼谱图中,在472 和和 634 cm-1两个谱
29、峰之间有些弱的谱峰存在,两个谱峰之间有些弱的谱峰存在,而这些谱峰在四方相的拉曼谱图中是而这些谱峰在四方相的拉曼谱图中是不存在的。不存在的。100 200 300 400 500 600 700 800 900mmmmmmmtttm700oC500oC400oC Intensity/A.U.Raman shift/cm-1400oC:混合晶相混合晶相 500oC:m-ZrO2700oC 焙烧之后仍能观焙烧之后仍能观察到四方晶相察到四方晶相ZrO2.ZrOZrO2 2样品不同温度焙烧后的紫外样品不同温度焙烧后的紫外拉曼光谱图和拉曼光谱图和XRDXRD图谱图谱10020030040050060070
30、0800900mmmmmmmm700oC500oC400oC tttRaman shift/cm-1IntensityZrOZrO2 2样品不同温度焙烧后的可见样品不同温度焙烧后的可见拉曼光谱图和拉曼光谱图和XRDXRD图谱图谱可见拉曼光谱可见拉曼光谱的结果和的结果和XRD的结果非常相的结果非常相似似主要为四方主要为四方晶相晶相提出的提出的 ZrOZrO2 2 相变机理相变机理UV LaserX-rayUV Raman ScatteringXRDVisible LaserVisible Raman ScatteringAmorphous Zr(OH)4Tetragonal ZrO2Monocl
31、inic ZrO2 紫外拉曼光谱与紫外拉曼光谱与XRD,可见拉曼光,可见拉曼光谱结果的不同表明氧化锆四方相到谱结果的不同表明氧化锆四方相到单斜相的相变首先是从表面开始,单斜相的相变首先是从表面开始,接着逐步发展到体相。接着逐步发展到体相。S.Shukla,et al.Nano Letters 2002,2,989.TEM evidence for the phase transformation of ZrO2Tetragonal MonoclinicCan Li,et al.J.Phys.Chem.B 2001,105,8107.150300450600750900 ex=244 nm800
32、oC700oC600oC500oC640613476374340308 IntensityRaman shifts/cm-1150300450600750900 ex 325 nm327800oC700oC600oC500oC636613472378261178146 IntensityRaman shifts/cm-12 mol%Y2O3-ZrO2体相主要为四体相主要为四方相方相掺杂掺杂2 mol%Y2O3 并不能使四方相在样品的表面稳定并不能使四方相在样品的表面稳定整个焙烧过程整个焙烧过程中仅观察到单中仅观察到单斜相谱峰斜相谱峰Y Y掺杂氧化锆相变的研究掺杂氧化锆相变的研究20040060
33、0800 ex=244 nmIntensity258800oC700oC600oC500oC632475373335 Raman shifts/cm-1200400600800 ex=325 nmIntensity634611472377328261175148800oC700oC600oC500oC Raman shifts/cm-1紫外,近紫外拉曼光谱图和紫外,近紫外拉曼光谱图和 XRDXRD图谱图谱5 mol%Y2O3-ZrO2体相主要是体相主要是四方相四方相202530354045t:Tetragonalm:monoclinicmmt800oC700oC600oC500oC 表面主要是
34、表面主要是单斜相单斜相150300450600750900 ex=244 nm800oC700oC600oC500oC400oC270319469640 IntensityRaman shifts/cm-1150300450600750900 ex=325 nm640462316266148800oC700oC600oC500oC400oC IntensityRaman shifts/cm-1紫外和近紫外拉曼光谱图紫外和近紫外拉曼光谱图8 mol%Y2O3-ZrO2202530354045t:tetragonalt800oC700oC600oC500oC 表面处于扭曲结构的单表面处于扭曲结构的
35、单斜晶相斜晶相体相处于四方晶体相处于四方晶相相MonoclinicTetragonal400500600700800Calcination Temperature/oCSurface phaseBulk phase2 wt%Y2O3400500600700800Calcination Temperature/oC8 wt%Y2O3Distorted surface phaseY Y掺杂氧化锆相变的过程掺杂氧化锆相变的过程AmorphousTetragonalMonoclinicZrO2 400 500 600 700 800Calcination Temperature/oC 8 mol%Y2
36、O3-ZrO28 mol%La2O3-ZrO2t mZrOZrO2 2 及及Y Y2 2OO3 3(La(La2 2OO3 3)-)-ZrOZrO2 2 相变相变TiOTiO2 2 的晶相结构的晶相结构ZrO2的晶相配位结构的晶相配位结构RutileAnataseBrookite rutile anatase brookite TiO2 TiO2 TiO2 -Form.Wt.79.890 79.890 79.890 Crystal System Tet Tet Orth Space Group P42/mnm I41/amd PbcaUnit Cella()4.5845 3.7842 9.18
37、4b()5.447c()2.9533 9.5146 5.145Vol 62.07 136.25 257.38MolarVol 18.693 20.156 19.377Density 4.2743 3.895 4.123 锐钛矿和金红石相的锐钛矿和金红石相的UV-vis 和拉曼光谱图和拉曼光谱图2003004005006000.00.20.40.60.81.0Absorbancewavelength/nm anatase rutile532 nm244 nm325 nmTiOTiO2 2不同温度焙烧的不同温度焙烧的XRDXRD图谱和可见拉曼光谱图谱和可见拉曼光谱20030040050060070
38、0800020406080100 XRD visible Raman Rutile content(%)Temperature(oC)可见拉曼的结果与可见拉曼的结果与XRDXRD的结果的结果一致一致混合晶相混合晶相金红石晶相金红石晶相TiOTiO2 2不同温度焙烧的紫外和可见拉曼光谱不同温度焙烧的紫外和可见拉曼光谱Phase transformation of TiO2 calcined in air at different temperaturesRutileAnatase300500400700800Calcination Temperature/oCSurface phaseBulk
39、phase600 500oC(锐钛矿锐钛矿)600oC(锐钛矿和金红石锐钛矿和金红石 的混合晶相的混合晶相)800oC(金红石金红石)不同温度焙烧的不同温度焙烧的 TiOTiO2 2 样品的样品的TEMTEM 小粒子团聚成大粒子小粒子团聚成大粒子TiOTiO2 2相变模型相变模型400 500 600 700 800Calcination Temperature/oC AnataseRutileAnataseRutileUV Raman spectraUV laservisible Raman spectravisible laserRaman spectra of binary K2O-xS
40、iO2 glass40080012001600 Relative intensityRaman shift/cm-1K-Si0.5K-Si1.0K-Si0.67K-Si1.3K-Si1.67K-Si1.5K-Si2.0K-Si2.3K-Si3.0K-Si4.0Raman scattering from Na0.5CoO2 with trigonal structure C3v(as grown)312C vAAE2004006008001000466433569EA2A1 UnpolarizedVH(bc)VV(ab)VH(ac)Intensity(a.u.)Raman shift(cm-1)
41、Raman spectra from Na0.5CoO2 as function of temperature and a phase transition from C3v to C2v has been observed200400600800325 K345 K355 K375 KB2B2B1B1B1A2A1A1A1C2vc3v395 KRTNa0.5CoO2as grownEgA2A1 Intensity(a.u.)Raman shift(cm-1)21212332BBAAvCAnother phase transition was observed after annealing t
42、he sample at 495 K.200400600800485 K465 K445 K415 K395 Kcooling to RTIntensity(a.u.)A1gE2gE2gE2gE1g495 K Raman shift(cm-1)D6h-A1g+E1g+3E2g C3v-A1+A2+Eg C2v-3A1+3B1+A2+2B2 D6h-A1g+E1g+3E2g 2004006008001000RTNa0.5CoO2as grownEgA2A1 Intensity(a.u.)Raman shift(cm-1)2004006008001000B2B2B1B1B1A2A1A1A1C2vD
43、3vT=358 KRTNa0.5CoO2as grownEgA2A1 Intensity(a.u.)Raman shift(cm-1)2004006008001000T=358 KD6hC2vD6hNa0.5CoO5Intensity(a.u.)A1gE2gE2gE2gE1gRTT=495 K Raman shift(cm-1)ConclusionIn vivo Raman system(a)Schematic diagram of IVRS(b)The compact Holospec(471917 cm,8 kg)utilizes a holographic grating,notch f
44、ilter and NIR anti-reflective coated lenses to produce a high optical transmission spectrograph The microscope objective is mounted on a precision translation table In vivo Raman systemConfocal Raman setup for in vivo experiment A dedicated inverted confocal Raman icrospectrometer Focus the laser li
45、ght at a selected depth below the skin surface Brain tissueAlzheimers disease(AD)The presence of a stronger amide I band in the 1667 cm-1 region which occurs more prominently in the Alzheimers diseased tissue Sudworth et al.,Proc.of SPIE,2004,5321:93-101Thoracic cavity tissueAtherosclerosis Raw data
46、(dots)and simulation with the first six principal components(line)Non atherosclerotic Non calcified calcified tissue PCA tissue pathology&Deinum et al.,Appl.Spectrosc.1999,53:938-942Thoracic cavity tissueAtherosclerosis In vivo intravascular Raman spectroscopic experiments Two approaches Comparison
47、of Raman spectra collected in vivo and in vitro Buschman et al.,Anal.Chem.2000,72:3771-3775Application of CRS on probing into historyPigment Identification on Colored Drawing from Wuying Hall of the Imperial PalaceThe plan of“Forbidden City”Wuying HallApplication of CRS on probing into historyPigmen
48、t Identification on Colored Drawing from Wuying Hall of the Imperial PalaceThe Imperial Palace,also named“Forbidden City”,is the greatest palace of all over the world.Wuying hall,one group house of the Imperical Palace,was initially built during Yongle period of Ming dynasty.In the following 600 yea
49、rs,till Qing dynasty,Wuying hall was expanded subsquently.Application of CRS on probing into historyTop-left:Raman spectra of black pigmentTop-right:Raman spectra of green pigmentBelow-left:Raman spectra of blue pigment 流体包裹体盐度是流体包裹体的重要参数之一,以往的测试一直是先用冷冻法测出包裹体中水溶液的冰点,然后再根据相图求得盐度。自1989 年澳大利亚学者T.P.Mern
50、agh 和R.R.Wilde提出了利用激光拉曼光谱测定包裹体溶液盐度的新方法该方法是针对具有明显特征峰的离子而采用的,如CO2-3、SO2-4 等离子,这些离子具有很强的拉曼特征峰,利用其特征峰与水拉曼峰的比值随盐浓度的变化来预测水中盐的浓度,所以我们把它称为特征峰强度比值法。特征峰强度比值法特征峰强度比值法 先用待测离子特征峰与水在3400cm-1处拉曼峰的强度比值与浓度关系作出工作曲线,然后通过工作曲线对未知盐水浓度进行预测RI=Ic/I3400C 浓度(mol/L)拉曼强度比值与盐浓度关系曲线图拉曼强度比值与盐浓度关系曲线图 对一些盐类,没有明显的特征峰,但是由于这些盐类的存在会使得水拉