1、小数点向右移动的规律一、教学目标1、知识与技能:理解并掌握小数点向右移动的变化规律,会运用规律口算小数乘10、100、1000的乘法,会把高级单位的单名数改写成低级单位的数或复名数。2、过程与方法:经历自主探索小数点位置向右移动的变化规律,以及简单应用的过程。3、情感态度与价值观:积极参加数学活动,获得用已有知识解决问题的成功体验,感受数学学习的价值。四、教学重难点1、教学重点:发现、总结小数点向右移动引起小数大小变化的规律,并运用规律进行小数乘10、100、1000的口算,总结把高级单位的数改写成低级单位的数的方法。2、教学难点:发现、总结和描述规律。二、教学过程(一)问题情景将下面的三个数
2、按从大到小的顺序排列出来2.35 235 23.523523.52.35这三个数有什么相同和不同的地方?总结:三个数虽然数字相同,数字的排列顺序也相同,但小数点的位置不同,数的大小就不同。也就是说,小数点的位置移动可以引起数的大小变化,这种变化有什么规律?我们这节课就来一起探究小数点_移动的规律(板书)。(二)探索小数点向右移动的规律1、教师拿出1枚纽扣,并口述问题:1枚纽扣5分钱,10枚纽扣多少元?(幻灯片同时出示),鼓励学生用自己的方法计算并列出算式。2、交流学生计算方法和结果,重点让学生说一说是怎样想的,怎样算的,只要学生说的有道理,就给予肯定。教师板书:0.05X10=0.5(元)。学
3、生若出现以下算法:1枚纽扣5分钱,10枚纽扣就是5角钱,5X10=50分,50分=0.5元,教师要引导学生将5分、5角化为以元为单位的数,从而列出算式0.05X10=0.5(元)。3、提出“100枚纽扣多少元,1000枚纽扣多少元”的问题,让学生列出算式并计算出结果。4、交流学生计算的方法和结果。重点说一说怎样算的,教师板书算式: 0.05X100=5(元);0.05X1000=50(元)。5、提出“说一说”的问题:观察这三个算式,你发现了什么?(1)教师引导学生观察三个算式中的因数和积,发现0.05乘10、100、1000时,小数点移动的变化规律,(2)介绍:0.5乘10,可以说把0.5扩大
4、到原来的10倍;0.05乘100,可以说把0.05扩大到原来的100倍再鼓励学生用“扩大到多少倍”来描述上述规律。(3)师生共同总结小数点向右移动的变化规律:0.05扩大到原来的10倍,小数点向右移动一位,扩大到原来的100倍,小数点向右移动两位,扩大到原来的1000倍,小数点向右移动三位., 6、尝试应用(1)把3.87分别扩大到原来的10倍、100倍、1000倍,各是多少?先让自己列式并计算。交流学生列式的结果,让学生利用磁扣展示小数点移动过程。重点关注:3.87X1000,3.87的小数点向右移动三位,位数不够,要用0补足。计算器验证结果,将上述结论扩充到“一个数”。(2)口算3.5X1
5、0 9.6X100 0.07X1000 7.06X100说出如何算的,重点关注0.07X1000和7.06X100的计算结果。衔接:如果你认为我们学习的规律只能用于口算,那你就太小瞧我们这个规律呢。它还有大用途呢!请看下面的例题(三)把高级单位的数改写成低级单位的数或复名数把写字台的长和宽改写成以厘米为单位的数。(课件出示)1、先独立完成1.3米=( )厘米,再说一说你是怎么想的。2、让学生说一说自己的做法,给学生充分表达不同方法的机会。学生可能会出现以下两种做法:(1)分别把1米和0.3米改写成100厘米和30厘米,再相加。(2)根据1米=100厘米,用1.3直接乘进率100。3、总结引导学生总结:把高级单位的数改写成低级单位的数,要乘进率。4、用乘进率的方法,让学生完成0.65米=( )厘米。三、小结说一说本节课的收获?四、当堂小测1、口算0.786X10= 17.5X100= 3.05X1000= 1.25X100=2、单位换算0.32吨=( )千克4.85米=( )米( )厘米