1、 第第 二二 章章 统计统计 2.1 随机抽样随机抽样 2.1.1 简单随机抽样简单随机抽样 学案学案 新知自解新知自解 1.理解简单随机抽样的概念理解简单随机抽样的概念. 2.熟练掌握最常见的两种简单随机抽样方熟练掌握最常见的两种简单随机抽样方法法抽签法抽签法(抓阄法抓阄法)和随机数和随机数 法法. 3.会恰当选用两种简单随机抽样方法从实际问题的总体中抽取样本会恰当选用两种简单随机抽样方法从实际问题的总体中抽取样本. 简单随机抽样的定义简单随机抽样的定义 设一个总体含有设一个总体含有 N 个个体个个体,从中逐个从中逐个_地抽取地抽取 n 个个体作为样本个个体作为样本 (nN),如果每次抽取时
2、总体内的各个个体被抽到的机会如果每次抽取时总体内的各个个体被抽到的机会_,就把这种就把这种 抽样方法叫做简单随机抽样抽样方法叫做简单随机抽样. 简单随机抽样的分类简单随机抽样的分类 简单随机抽样简单随机抽样 _, , _. 不放回不放回 都相等都相等 抽签法抽签法 随机数法随机数法 化解疑难化解疑难 (1)对总体、个体、样本、样本容量的认识对总体、个体、样本、样本容量的认识 总体:总体:统计中所考察对象的全体叫做总体;统计中所考察对象的全体叫做总体; 个体:总体中的每一个考察对象叫做个体;个体:总体中的每一个考察对象叫做个体; 样本:从总体中抽取的一部分个体叫做样本;样本:从总体中抽取的一部分
3、个体叫做样本; 样本容量:样本的个体的数目叫做样本容量样本容量:样本的个体的数目叫做样本容量. (2)简单随机抽样必须具备的几个特点简单随机抽样必须具备的几个特点 被抽取样本的总体中的个体数被抽取样本的总体中的个体数 N 是有限的是有限的. 抽取的样本个体数抽取的样本个体数 n 小于或等于总体中的个体数小于或等于总体中的个体数 N. 样本中的每个个体都是逐个不放回抽取的样本中的每个个体都是逐个不放回抽取的. 每个个体入样的可能性均为每个个体入样的可能性均为 n N. 1.某校期末考试后某校期末考试后,为了分析该校高一年级为了分析该校高一年级 1 000 名学生的成绩名学生的成绩,从中抽取从中抽
4、取 了了 100 名学生的成绩单进行调查名学生的成绩单进行调查.就这个问题来说就这个问题来说,下下面说法正确的是面说法正确的是( ) A.1 000 名学生是总体名学生是总体 B.每名学生是个体每名学生是个体 C.100 名学生的成绩是一个个体名学生的成绩是一个个体 D.样本的容量是样本的容量是 100 解析:解析: 由随机抽样的基本概念可得由随机抽样的基本概念可得,选选D. 答案:答案: D 2.某工厂的质检人员对生产的某工厂的质检人员对生产的 100 件产品件产品,采用随机数法抽取采用随机数法抽取 10 件检查件检查, 对对 100 件产品采用下面的编号方法件产品采用下面的编号方法 1,2
5、,3,100;001,002,100;00,01,02,99;01, 02,03,100. 其中正确的序其中正确的序号是号是( ) A. B. C. D. 解析:解析: 根据随机数表法的步骤可知根据随机数表法的步骤可知,编号位数不统一编号位数不统一. 答案:答案: C 3.某种福利彩票的中奖号码是从某种福利彩票的中奖号码是从 136 个号码中个号码中,选出选出 7 个号码来按规则确个号码来按规则确 定中奖情况定中奖情况,这种从这种从 36 个号码中选个号码中选 7 个号码的抽样方法是个号码的抽样方法是 . 解析:解析: 符合抽签法的特点:符合抽签法的特点:个体数较少;个体数较少;样本容量小样本
6、容量小. 答案:答案: 抽签法抽签法 教案教案 课堂探究课堂探究 简单随机抽样的判断简单随机抽样的判断自主练透型自主练透型 下面的抽样方法是简单随机抽样吗?为什么?下面的抽样方法是简单随机抽样吗?为什么? (1)从无数个个体中抽取从无数个个体中抽取 20 个个体作为样本;个个体作为样本; (2)从从 50 台冰箱中一次性抽取台冰箱中一次性抽取 5 台冰箱进行质量检查;台冰箱进行质量检查; (3)某班有某班有 40 名同学名同学,指定个子最高的指定个子最高的 5 名同学参加学校组织的篮球赛;名同学参加学校组织的篮球赛; (4)一彩民选号,从装有一彩民选号,从装有 36 个大小、形状都相同的号签的
7、盒子中无放回地抽个大小、形状都相同的号签的盒子中无放回地抽 出出 6 个号签个号签. 解析:解析: (1)不是简单随机抽样不是简单随机抽样.因为总体的个数是无限的因为总体的个数是无限的,而不是有限的而不是有限的. (2)不是简单随机抽样不是简单随机抽样.简单随机抽样的定义要求的是简单随机抽样的定义要求的是“逐个抽取逐个抽取”. (3)不是简单随机抽样不是简单随机抽样.因为是指定因为是指定 5 名同学参加比赛名同学参加比赛,每个个体被抽到的可每个个体被抽到的可 能性是不同的能性是不同的,不是等可能抽样不是等可能抽样. (4)是简单随机抽样是简单随机抽样.因为总体中的个体数是有限的因为总体中的个体
8、数是有限的,并且是从总体中逐个进并且是从总体中逐个进 行抽取的行抽取的,是不放回、等可能地进行抽样是不放回、等可能地进行抽样. 归纳升归纳升华华 要判断所给的抽样方要判断所给的抽样方法是否是简单随机抽样法是否是简单随机抽样, 关键是看它们是否符合简单随关键是看它们是否符合简单随 机抽样的定义机抽样的定义,即简单随机抽样的四个特点:即简单随机抽样的四个特点:(1)总体的个数有限;总体的个数有限;(2)逐个抽取;逐个抽取; (3)是不放回的抽取;是不放回的抽取;(4)保证每个个体被抽到的可能性是相同的保证每个个体被抽到的可能性是相同的. 1.下面的抽样方法是简单随机抽样吗?为什么?下面的抽样方法是
9、简单随机抽样吗?为什么? (1)从从 20 个零件中一次性抽出个零件中一次性抽出 3 个进行质量检验个进行质量检验. (2)一儿童从玩具箱中的一儿童从玩具箱中的 20件玩具中随意拿出一件来玩件玩具中随意拿出一件来玩, 玩后放回再拿一件, 玩后放回再拿一件, 连续玩连续玩 5 件件. (3)从从 200 个灯泡中逐个抽取个灯泡中逐个抽取 10 个进行质量检查个进行质量检查. 解析:解析: (1)不是简单随机抽样不是简单随机抽样.因为这是一次性抽取因为这是一次性抽取,而不是逐个抽取而不是逐个抽取. (2)不是不是简单随机抽样简单随机抽样.因为这是有放回抽样因为这是有放回抽样. (3)是简单随机抽样
10、是简单随机抽样.因为它满足简单随机抽样的四个特点因为它满足简单随机抽样的四个特点. 抽签法的应用抽签法的应用多维探究型多维探究型 2015 年央视春晚筹年央视春晚筹备时, 从中国音乐家协会备时, 从中国音乐家协会 32 名男音乐家和名男音乐家和 28 名女名女 音乐家中选择音乐家中选择 10 名男士和名男士和 8 名女士参加合唱名女士参加合唱, 试用抽签法确定参加合唱的名单试用抽签法确定参加合唱的名单. 解析:解析: 其步骤如下:其步骤如下: (1)将将 32 名男士从名男士从 1 到到 32 编号编号. (2)用相同的纸条做成用相同的纸条做成 32 个号签个号签,在每个号签上写这些编号在每个
11、号签上写这些编号. (3)将写好的号签放在一个不透明的容器中摇匀将写好的号签放在一个不透明的容器中摇匀,不放回地逐个从中抽出不放回地逐个从中抽出 10 个号签个号签. (4)相应编号的男士参加合唱相应编号的男士参加合唱. (5)运用相同的办法从运用相同的办法从 28 名女士中选出名女士中选出 8 人人,则此则此 8 名女士参加合唱名女士参加合唱. 归纳升华归纳升华 抽签法的优点:简单易行抽签法的优点:简单易行.当总体的个数不多时当总体的个数不多时,使总体处于使总体处于“搅拌均匀搅拌均匀” 的状态比较容易的状态比较容易,这时这时,每个个体都有均等的机会被抽中每个个体都有均等的机会被抽中,从而能够
12、保证样本的从而能够保证样本的 代表性代表性.缺点:仅适用于个体数较少的总体缺点:仅适用于个体数较少的总体.当总体容量非常大时当总体容量非常大时,费时费力又不费时费力又不 方便方便.况且况且,如果号签搅拌的不均匀如果号签搅拌的不均匀,可能导致抽样不公平可能导致抽样不公平. 2.要在要在 20 名学生中抽取名学生中抽取 5 名进行问卷调查名进行问卷调查,试写出抽取样本的过程试写出抽取样本的过程. 解析:解析: (1)先将先将 20 名学生进行编号名学生进行编号,号码为号码为 1,2,20; (2)把号码写在形状、大小均相同的号签上;把号码写在形状、大小均相同的号签上; (3)将号签放在某个不透明的
13、箱子中充分搅拌将号签放在某个不透明的箱子中充分搅拌,使之均匀;使之均匀; (4)从箱子中从箱子中,逐个抽取逐个抽取 5 个号签个号签,并记录上面的编号;并记录上面的编号; (5)与这与这 5 个号签上的号码对应的个号签上的号码对应的 5 名学生就构成了一个样本名学生就构成了一个样本. 随机数法的应用随机数法的应用多维探究型多维探究型 某车间工人加工了一批零件共某车间工人加工了一批零件共 40 件件.为为了了解这批零件的质量情况,了了解这批零件的质量情况, 要从中抽取要从中抽取 10 件进行检验件进行检验,如何采用随机数表法抽取样本如何采用随机数表法抽取样本,写出抽样步骤写出抽样步骤. 解析:解
14、析: 抽样步骤是:抽样步骤是: 第一步第一步,先将先将 40 件零件编号件零件编号,可以编号为可以编号为 00,01,02,38,39. 第二步第二步, 在随机数表中任选一个数作为开始在随机数表中任选一个数作为开始, 例如从教材附表的随机数表中例如从教材附表的随机数表中 的第的第 8 行第行第 9 列的数列的数 5 开始开始.为便于说明为便于说明,我们将随机数表中的第我们将随机数表中的第 6 行到第行到第 10 行行 摘录如下:摘录如下: 16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 64 84
15、42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76 63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79 33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54 57 60 86 34 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28 第三步
16、第三步,从选定的数从选定的数 5 开始向右读下去开始向右读下去,得一个两位数字号码得一个两位数字号码 59,由于由于 5939,将它去掉;继续向右读将它去掉;继续向右读,得到得到 16,将它取将它取出;继续下去出;继续下去,又得到又得到 19, 10,12,07,39,38,33,21,随后的两位数字号码是随后的两位数字号码是 12,由于它在前面已经由于它在前面已经 取出取出,将它去掉将它去掉,再继续下去再继续下去,得到得到 34.至此至此,10 个样本号码已经取满个样本号码已经取满,于是于是, 所要抽取的样本号码是所要抽取的样本号码是 16,19,10,12,07,39,38,33,21,3
17、4.与这与这 10 个号个号 码对应的零件即是抽取的样本个码对应的零件即是抽取的样本个体体. 归纳升华归纳升华 在随机数表法抽样的过程中要注意:在随机数表法抽样的过程中要注意:(1)编号要求位数相同编号要求位数相同,读数时应结合读数时应结合 编号特点进行读取编号特点进行读取,如:编号为两位如:编号为两位,则两位、两位地读取;编号为三位则两位、两位地读取;编号为三位,则三则三 位、三位地读取位、三位地读取. (2)第一个数字的抽取是随机的第一个数字的抽取是随机的. (3)读数的方向是任意的读数的方向是任意的,且事先定好且事先定好. 3.有一批机器有一批机器,编号为编号为 1,2,3,112.请用
18、随机数法抽取请用随机数法抽取 10 台入样,写台入样,写 出抽样过程出抽样过程. 解析:解析: 法一法一:第一步:第一步,将原来的编号调整为将原来的编号调整为 001,002,003,112. 第二步第二步,在随机数表中任选一数作为开始在随机数表中任选一数作为开始,任选一方向作为读数方向任选一方向作为读数方向.比如比如, 选第选第 9 行第行第 7 个数个数“3”,向右读向右读. 第三步第三步,从从“3”开始开始,向右读向右读,每次读取三位每次读取三位,凡不在凡不在 001112 中的数跳中的数跳 过去不读过去不读,前面已经读过的也跳过去不读前面已经读过的也跳过去不读,依次可得到依次可得到 0
19、74,100,094,052, 080,003,105,107,083,092. 第四步第四步,对应原来编号为对应原来编号为 74,100,94,52,80,3,105,107,83,92 的的 机器便是要抽取的对象机器便是要抽取的对象. 法二法二:第一步:第一步,将原来的编号调整为将原来的编号调整为 101,102,103,212. 第二步第二步,在随机数表中任选一数作为开始在随机数表中任选一数作为开始,任选一方向作为读数方向任选一方向作为读数方向.比如比如, 选第选第 9 行第行第 7 个数个数“3”,向右读向右读. 第三步第三步,从从“3”开始开始,向右读向右读,每次读取三位每次读取三位,凡不在凡不在 101212 中的数跳中的数跳 过去不读过去不读,前面已经读过的也跳过去不读前面已经读过的也跳过去不读,依次可得到依次可得到 155,134,174,180, 165,196,206,105,160,201. 第四步第四步,对应原来对应原来编号为编号为 55,34,74,80,65,96,106,5,60,101 的机的机 器便是要抽取的对象器便是要抽取的对象. 谢谢观看!谢谢观看!