1、 因动点产生的等腰三角形问题课前导学我们先回顾两个画图问题:1已知线段AB5厘米,以线段AB为腰的等腰三角形ABC有多少个?顶点C的轨迹是什么?2已知线段AB6厘米,以线段AB为底边的等腰三角形ABC有多少个?顶点C的轨迹是什么?已知腰长画等腰三角形用圆规画圆,圆上除了两个点以外,都是顶点C已知底边画等腰三角形,顶角的顶点在底边的垂直平分线上,垂足要除外在讨论等腰三角形的存在性问题时,一般都要先分类如果ABC是等腰三角形,那么存在ABAC,BABC,CACB三种情况解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快几何法一般分三步:分类、画图、计算哪些题目
2、适合用几何法呢?如果ABC的A(的余弦值)是确定的,夹A的两边AB和AC可以用含x的式子表示出来,那么就用几何法如图1,如果ABAC,直接列方程;如图2,如果BABC,那么;如图3,如果CACB,那么代数法一般也分三步:罗列三边长,分类列方程,解方程并检验如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来图1 图2 图3 例 9 2014年长沙市中考第26题如图1,抛物线yax2bxc(a、b、c是常数,a0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的P总经过定点A(0, 2)(1
3、)求a、b、c的值;(2)求证:在点P运动的过程中,P始终与x轴相交;(3)设P与x轴相交于M(x1, 0)、N(x2, 0)两点,当AMN为等腰三角形时,求圆心P的纵坐标图1动感体验请打开几何画板文件名“14长沙26”,拖动圆心P在抛物线上运动,可以体验到,圆与x轴总是相交的,等腰三角形AMN存在五种情况思路点拨1不算不知道,一算真奇妙,原来P在x轴上截得的弦长MN4是定值2等腰三角形AMN存在五种情况,点P的纵坐标有三个值,根据对称性,MAMN和NANM时,点P的纵坐标是相等的图文解析(1)已知抛物线的顶点为(0,0),所以yax2所以b0,c0将代入yax2,得解得(舍去了负值)(2)抛
4、物线的解析式为,设点P的坐标为已知A(0, 2),所以而圆心P到x轴的距离为,所以半径PA圆心P到x轴的距离所以在点P运动的过程中,P始终与x轴相交(3)如图2,设MN的中点为H,那么PH垂直平分MN在RtPMH中,所以MH24所以MH2因此MN4,为定值等腰AMN存在三种情况:如图3,当AMAN时,点P为原点O重合,此时点P的纵坐标为0图2 图3如图4,当MAMN时,在RtAOM中,OA2,AM4,所以OM2此时xOH2所以点P的纵坐标为如图5,当NANM时,根据对称性,点P的纵坐标为也为图4 图5如图6,当NANM4时,在RtAON中,OA2,AN4,所以ON2此时xOH2所以点P的纵坐标
5、为如图7,当MNMA4时,根据对称性,点P的纵坐标也为图6 图7考点伸展如果点P在抛物线上运动,以点P为圆心的P总经过定点B(0, 1),那么在点P运动的过程中,P始终与直线y1相切这是因为:设点P的坐标为已知B(0, 1),所以而圆心P到直线y1的距离也为,所以半径PB圆心P到直线y1的距离所以在点P运动的过程中,P始终与直线y1相切例 10 2014年湖南省张家界市中考第25题如图1,在平面直角坐标系中,O为坐标原点,抛物线yax2bxc(a0)过O、B、C三点,B、C坐标分别为(10, 0)和,以OB为直径的A经过C点,直线l垂直x轴于B点(1)求直线BC的解析式;(2)求抛物线解析式及
6、顶点坐标;(3)点M是A上一动点(不同于O、B),过点M作A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0t8)秒时恰好使BPQ为等腰三角形,请求出满足条件的t值 图 图1 动感体验请打开几何画板文件名“14张家界25”,拖动点M在圆上运动,可以体验到,EAF保持直角三角形的形状,AM是斜边上的高拖动点Q在BC上运动,可以体验到,BPQ有三个时刻可以成为等腰三角形 思路点拨1从直线BC的解析式可以得到OBC的三角比,为讨论等腰
7、三角形BPQ作铺垫2设交点式求抛物线的解析式比较简便3第(3)题连结AE、AF容易看到AM是直角三角形EAF斜边上的高 4第(4)题的PBQ中,B是确定的,夹B的两条边可以用含t的式子表示分三种情况讨论等腰三角形图文解析(1)直线BC的解析式为(2)因为抛物线与x轴交于O、B(10, 0)两点,设yax(x10)代入点C,得解得所以抛物线的顶点为(3)如图2,因为EF切A于M,所以AMEF由AEAE,AOAM,可得RtAOERtAME所以12同理34于是可得EAF90所以51由tan5tan1,得所以MEMFMA2,即mn25 图2(4)在BPQ中,cosB,BP10t,BQt分三种情况讨论等
8、腰三角形BPQ:如图3,当BPBQ时,10tt解得t5如图4,当PBPQ时,解方程,得如图5,当QBQP时,解方程,得图3 图4 图5考点伸展在第(3)题条件下,以EF为直径的G与x轴相切于点A如图6,这是因为AG既是直角三角形EAF斜边上的中线,也是直角梯形EOBF的中位线,因此圆心G到x轴的距离等于圆的半径,所以G与x轴相切于点A图6例 11 2014年湖南省邵阳市中考第26题在平面直角坐标系中,抛物线yx2(mn)xmn(mn)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C(1)若m2,n1,求A、B两点的坐标;(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,1),
9、求ACB的大小;(3)若m2,ABC是等腰三角形,求n的值动感体验请打开几何画板文件名“14邵阳26”,点击屏幕左下方的按钮(2),拖动点A在x轴正半轴上运动,可以体验到,ABC保持直角三角形的形状点击屏幕左下方的按钮(3),拖动点B在x轴上运动,观察ABC的顶点能否落在对边的垂直平分线上,可以体验到,等腰三角形ABC有4种情况思路点拨1抛物线的解析式可以化为交点式,用m,n表示点A、B、C的坐标2第(2)题判定直角三角形ABC,可以用勾股定理的逆定理,也可以用锐角的三角比3第(3)题讨论等腰三角形ABC,先把三边长(的平方)罗列出来,再分类解方程图文解析(1)由yx2(mn)xmn(xm)(
10、xn),且mn,点A位于点B的右侧,可知A(m, 0),B(n, 0)若m2,n1,那么A(2, 0),B(1, 0)(2)如图1,由于C(0, mn),当点C的坐标是(0,1),mn1,OC1若A、B两点分别位于y轴的两侧,那么OAOBm(n)mn1所以OC2OAOB所以所以tan1tan2所以12又因为1与3互余,所以2与3互余所以ACB90图1 图2 图3(3)在ABC中,已知A(2, 0),B(n, 0),C(0, 2n)讨论等腰三角形ABC,用代数法解比较方便:由两点间的距离公式,得AB2(n2)2,BC25n2,AC244n2当ABAC时,解方程(n2)244n2,得(如图2)当C
11、ACB时,解方程44n25n2,得n2(如图3),或n2(A、B重合,舍去)当BABC时,解方程(n2)25n2,得(如图4),或(如图5)图4 图5考点伸展第(2)题常用的方法还有勾股定理的逆定理由于C(0, mn),当点C的坐标是(0,1),mn1由A(m, 0),B(n, 0),C(0,1),得AB2(mn)2m22mnn2m2n22,BC2n21,AC2m21所以AB2BC2AC2于是得到RtABC,ACB90第(3)题在讨论等腰三角形ABC时,对于CACB的情况,此时A、B两点关于y轴对称,可以直接写出B(2, 0),n2例 12 2014年湖南省娄底市中考第27题如图1,在ABC中
12、,ACB90,AC4cm,BC3cm如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s连结PQ,设运动时间为t(s)(0t4),解答下列问题:(1)设APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?(2)如图2,连结PC,将PQC沿QC翻折,得到四边形PQPC,当四边形PQPC为菱形时,求t的值;(3)当t为何值时,APQ是等腰三角形?图1 图2动感体验请打开几何画板文件名“14娄底27”,拖动点Q在AC上运动,可以体验到,当点P运动到AB的中点时,APQ的面积最大,等腰三角形APQ存在三种情况还可以体验到,当QC2
13、HC时,四边形PQPC是菱形思路点拨1在APQ中,A是确定的,夹A的两条边可以用含t的式子表示2四边形PQPC的对角线保持垂直,当对角线互相平分时,它是菱形,图文解析(1)在RtABC中,AC4,BC3,所以AB5,sinA,cosA作QDAB于D,那么QDAQ sinAt所以SSAPQ当时,S取得最大值,最大值为(2)设PP与AC交于点H,那么PPQC,AHAPcosA如果四边形PQPC为菱形,那么PQPC所以QC2HC解方程,得图3 图4(3)等腰三角形APQ存在三种情况:如图5,当APAQ时,5tt解得如图6,当PAPQ时,解方程,得如图7,当QAQP时,解方程,得图5 图6 图7考点伸
14、展在本题情境下,如果点Q是PPC的重心,求t的值如图8,如果点Q是PPC的重心,那么QCHC解方程,得 图8例 13 2015年湖南省怀化市中考第22题如图1,已知RtABC中,C90,AC8,BC6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从ABC方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒(1)在运动过程中,求P、Q两点间距离的最大值;(2)经过t秒的运动,求ABC被直线PQ扫过的面积S与时间t的函数关系式;(3)P,Q两点在运动过程中,是否存在时间t,使得PQC为等腰三角形若存在,求出此时的t值,若不存在,请说明理由(,结果保留一位小数)图1动感
15、体验请打开几何画板文件名“15怀化22”,拖动点P在AC上运动,可以体验到,PQ与BD保持平行,等腰三角形PQC存在三种情况 思路点拨1过点B作QP的平行线交AC于D,那么BD的长就是PQ的最大值2线段PQ扫过的面积S要分两种情况讨论,点Q分别在AB、BC上3等腰三角形PQC分三种情况讨论,先罗列三边长图文解析(1)在RtABC中,AC8,BC6,所以AB10如图2,当点Q在AB上时,作BD/PQ交AC于点D,那么所以AD5所以CD3如图3,当点Q在BC上时,又因为,所以因此PQ/BD所以PQ的最大值就是BD在RtBCD中,BC6,CD3,所以BD所以PQ的最大值是图2 图3 图4(2)如图2
16、,当点Q在AB上时,0t5,SABD15由AQPABD,得所以SSAQP如图3,当点Q在BC上时,5t8,SABC24因为SCQP,所以SSABCSCQP24(t8)2t216t40(3)如图3,当点Q在BC上时,CQ2CP,C90,所以PQC不可能成为等腰三角形当点Q在AB上时,我们先用t表示PQC的三边长:易知CP8t如图2,由QP/BD,得,即所以如图4,作QHAC于H在RtAQH中,QHAQ sinA,AH在RtCQH中,由勾股定理,得CQ分三种情况讨论等腰三角形PQC:(1)当PCPQ时,解方程,得3.4(如图5所示)当QCQP时,整理,得所以(11t40)(t8)0解得3.6(如图6所示),或t8(舍去)当CPCQ时,整理,得解得3.2(如图7所示),或t0(舍去)综上所述,当t的值约为3.4,3.6,或等于3.2时,PQC是等腰三角形图5 图6 图7考点伸展第(1)题求P、Q两点间距离的最大值,可以用代数计算说理的方法:如图8,当点Q在AB上时,PQ当Q与B重合时,PQ最大,此时t5,PQ的最大值为如图9,当点Q在BC上时,PQ当Q与B重合时,PQ最大,此时t5,PQ的最大值为综上所述,PQ的最大值为图8 图9