九年级数学-一元二次方程和二次函数综合测试题.doc

上传人(卖家):2023DOC 文档编号:5519956 上传时间:2023-04-23 格式:DOC 页数:6 大小:107.50KB
下载 相关 举报
九年级数学-一元二次方程和二次函数综合测试题.doc_第1页
第1页 / 共6页
九年级数学-一元二次方程和二次函数综合测试题.doc_第2页
第2页 / 共6页
九年级数学-一元二次方程和二次函数综合测试题.doc_第3页
第3页 / 共6页
九年级数学-一元二次方程和二次函数综合测试题.doc_第4页
第4页 / 共6页
九年级数学-一元二次方程和二次函数综合测试题.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、一、选择题1、设、是关于的一元二次方程的两个实数根,且,则( ) A B C D2、下列命题:若,则; 若,则一元二次方程有两个不相等的实数根;若,则一元二次方程有两个不相等的实数根;若,则二次函数的图像与坐标轴的公共点的个数是2或3.其中正确的是()只有 只有 只有 只有3、若一次函数的图象过第一、三、四象限,则函数( )A有最大值 B有最大值 C有最小值 D有最小值4、已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(1,0),(3,0)对于下列命题:b2a=0;abc0;a2b+4c0;8a+c0其中正确的有()A3个B2个C1个D0个5、关于的一元二次方程的两个

2、实数根分别是,且,则的值是( )A1 B12 C13 D25二、填空题6、设、是方程的两根,则代数式= 。7、已知关于一元二次方程有一根是,则 。三、计算题8、已知:关于的方程(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是,求另一个根及值9、解方程: 四、综合题10、已知关于的一元二次方程的两个整数根恰好比方程的两个根都大1,求的值. 11、如图:抛物线与轴交于A、B两点,点A的坐标是(1,0),与轴交于点C(1)求抛物线的对称轴和点B的坐标;(2)过点C作CP对称轴于点P,连接BC交对称轴于点D,连接AC、BP,且BPD=BCP,求抛物线的解析式。12、已知关于x的二次函数y=

3、x2-(2m-1)x+m2+3m+4.(1)探究m满足什么条件时,二次函数y的图象与x轴的交点的个数.(2)设二次函数y的图象与x轴的交点为A(x1,0),B(x2,0),且+=5,与y轴的交点为C,它的顶点为M,求直线CM的解析式.13、如图,已知点,直线交轴于点,交轴于点 (1)求对称轴平行于轴,且过三点的抛物线解析式;(2)若直线平分ABC,求直线的解析式;(3)若直线产 (0)交(1)中抛物线于两点,问:为何值时,以为边的正方形的面积为9?14、如图,抛物线交轴于点、,交轴于点,连结,是线段上一动点,以为一边向右侧作正方形,连结,交于点(1)试判断的形状,并说明理由; (2)求证:;(

4、3)连结,记的面积为,的面积为,若,试探究的最小值15、如图,抛物线yx2bxc与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF2,EF3(1)求抛物线所对应的函数解析式;(2)求ABD的面积;(3)将AOC绕点C逆时针旋转90,点A对应点为点G,问点G是否在该抛物线上?请说明理由五、简答题16、已知的两边,的长是关于的一元二次方程的两个实数根,第三边的长是 (1)为何值时,是以为斜边的直角三角形;(2)为何值时,是等腰三角形,并求的周长17、已知关于的一元二次方程:(1)求证:方程有两个不相等的实数根;(2)

5、设方程的两个实数根分别为(其中)若是关于的函数,且,求这个函数的解析式;(3)在(2)的条件下,结合函数的图象回答:当自变量的取值范围满足什么条件时,18、已知抛物线y = ax2x + c经过点Q(2, ),且它的顶点P的横坐标为1设抛物线与x轴相交于A、B两点,如图(1)求抛物线的解析式;(2)求A、B两点的坐标;(3)设PB于y轴交于C点,求ABC的面积19、如图,已知抛物线的顶点为A(1,4)、抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式. (2)当PA+PB的值最小时,求点P的坐标 20、已知二次函数的部分图象如图7所示,抛物线与轴的一个交点坐标为,对称轴为直线.(1)若,求的值;(2)若实数,比较与的大小,并说明理由.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文(九年级数学-一元二次方程和二次函数综合测试题.doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|