1、北师大版七年级数学上册第五章一元一次方程单元测试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1下列运用等式的性质对等式进行的变形中,正确的是(B)A若xy,则5x5y B若ab,则acbcC若,则2a3b D若xy,则2下列方程x2,x0,y30,x2y3,x22x,x中是一元一次方程的有(B)A2个 B3个 C4个 D5个3把方程3x3去分母正确的是(A)A18x2(2x1)183(x1) B3x(2x1)3(x1)C18x(2x1)18(x1) D3x2(2x1)33(x1)4下列方程中,解为x2的方程是(B)A2x51x B32(x1)7xCx55x D4x3x
2、5若5与kx115的解相同,则k的值为(A)A2 B8 C2 D66若1与互为相反数,则m的值为(B)A. B. C D7班级组织同学们看电影,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是(D)A30x831x26 B30x831x26C30x831x26 D30x831x268某商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2 400元,则彩电的标价是(A)A3 200元 B3 429元 C2 667元 D3 168元9根据如图中的程序,当输出数值y为1时,输入数值x为(D)A8 B8或8 C8 D不存在10小明在做解方程作业时,
3、不小心将方程中的一个常数污染了看不清楚,被污染的方程是:2yy,怎么办呢?小明想了一想,便翻看书后答案,此方程的解是y,于是很快就补好了这个常数,你能补出这个常数吗?它应是(C)A1 B2 C3 D4二、填空题(每小题3分,共12分)11写出一个解为2的一元一次方程: 2y40(答案不唯一) 12已知ax1b4与9a2x1b4是同类项,则x的值为 2 .13一架飞机飞行在两个城市之间,顺风要2 h,逆风要2.1 h,已知风速是20 km/h,则两城市相距 1680 km.14已知关于x的一元一次方程x32xb的解为x2,那么关于y的一元一次方程(y1)32(y1)b的解为 y1 .三、解答题(
4、共78分)15(10分)解下列方程:(1)10(x1)5; 解:x.(2)2;解:x4.(3)2(y2)3(4y1)9(1y);解:y2.(4).解:x1.16(6分)x为何值时,代数式的值比x小1?解:由题意得x1,xx1x解得x.17(6分)小明用172元钱买了语文和数学的辅导书,共10本,语文辅导书的单价为18元,数学辅导书的单价为10元求小明所买的语文辅导书有多少本?解:设小明买语文辅导书x本,则依题意得18x10(10x)172,解得x9.小明所买的语文辅导书有9本18(6分)当m为何值时,关于x的方程5m3x1x的解比关于x的方程2xm3m的解大2?解:方程5m3x1x的解是x,方
5、程2xm3m的解是xm.由题意可知m2,解关于m的方程得m.故当m时,关于x的方程5m3x1x的解比关于x的方程2xm3m的解大2.19(6分)某药业集团生产的某种药品包装盒的侧面展开图如图所示如果长方体盒子的长比宽多4 cm,求这种药品包装盒的体积解:设长方体的宽为x cm,则长为(x4) cm,高为13(x4)cm.由题意,得2x2 13(x4)14.解得x5.则x49,13(x4)2.9 5 290 cm3.答:这种药品包装盒的体积为90 cm3.20(6分)某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件已知每加工一
6、个甲种零件可获利16元,每加工一个乙种零件可获利24元若此车间一共获利1 440元,求这一天有几名工人加工甲种零件解:设这一天有x名工人加工甲种零件,则这一天加工甲种零件5x个,乙种零件4(16x)个根据题意,得16 5x24 4(16x)1 440,解得x6.答:这一天有6名工人加工甲种零件21(6分)有一火车要以每分钟600米的速度过完第一、第二两座铁桥,过第二座铁桥比过第一座铁桥多5秒时间,又知第二座铁桥的长度比第一座铁桥长度的2倍短50米,试求两座铁桥的长分别为多少解:设第一座铁桥的长度为x米,那么第二座铁桥的长为(2x50)米,过完第一座铁桥所需要的时间为分,过完第二座铁桥所需要的时
7、间为分依题意,可列出方程,解方程得x100.所以2x502 10050150.答:第一座铁桥长100米,第二座铁桥长150米22(10分)已知x3是关于x的方程32的解,n满足关系式|2nm|0,求mn的值解:将x3代入方程32中,得32.解得m.将m代入关系式|2nm|0中,得0.于是有2n0.解得n.所以mn的值为.23(10分)我们规定,若关于x的一元一次方程axb的解为ba,则称该方程为“差解方程”,例如:2x4的解为2,且242.则该方程2x4是差解方程请根据上边规定解答下列问题:(1)判断3x4.5是否是差解方程;(2)若关于x的一元一次方程6xm2是差解方程,求m的值解:(1)因
8、为3x4.5,所以x1.5.因为4.531.5,所以3x4.5是差解方程(2)因为关于x的一元一次方程6xm2是差解方程,所以m26,解得m.24.(12分)商场计划拨款9万元,从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为甲种每台1 500元,乙种每台2 100元,丙种每台2 500元(1)若商场同时购进其中两种不同型号的电视机共50台,用去9万元,请求出商场有哪几种进货方案;(2)若商场销售一台甲种电视机可获得150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元在同时购进两种不同型号的电视机的方案中,为使销售时获利最多,该选择哪种进货方案?
9、解:(1)设购进甲种电视机x台,购进乙种电视机(50x)台,根据题意,得1 500x2 100(50x)90 000.解得x25.则50x25.故第一种进货方案是购甲、乙两种型号的电视机各25台;设购进甲种电视机y台,购进丙种电视机(50y)台,根据题意,得1 500y2 500(50y)90 000.解得y35.则50y15.故第二种进贷方案是购进甲种电视机35台,丙种电视机15台;设购进乙种电视机z台,购进丙种电视机(50z)台,根据题意,得2 100z2 500(50z)90 000.解得z87.5(不合题意)故此种方案不可行(2)上述的第一种方案可获利:150 25200 258 750(元);第二种方案可获利:150 35250 159 000(元)因为8 7509 000,所以应选择第二种进货方案,即购进甲种电视机35台,丙种电视机15台