1、13、分式总复习【知识精读】 【分类解析】1. 分式有意义的应用 例1. 若,试判断是否有意义。 分析:要判断是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断与零的关系。 解: 即 或 中至少有一个无意义。 2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。 例2. 计算: 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分离分式法”简化计算。 解:原式 例3. 解方程: 分析:因为,所以最简公分母为:,若采用去分母的通常方法,运算量较大。由于故可得如下解法。 解: 原方程变为 经检验,是原方程的根。 3. 在代数求值中的应用 例4.
2、已知与互为相反数,求代数式的值。 分析:要求代数式的值,则需通过已知条件求出a、b的值,又因为,利用非负数及相反数的性质可求出a、b的值。 解:由已知得,解得 原式 把代入得:原式 4. 用方程解决实际问题 例5. 一列火车从车站开出,预计行程450千米,当它开出3小时后,因特殊任务多停一站,耽误30分钟,后来把速度提高了0.2倍,结果准时到达目的地,求这列火车的速度。 解:设这列火车的速度为x千米/时 根据题意,得 方程两边都乘以12x,得 解得 经检验,是原方程的根 答:这列火车原来的速度为75千米/时。 5. 在数学、物理、化学等学科的学习中,都会遇到有关公式的推导,公式的变形等问题。而
3、公式的变形实质上就是解含有字母系数的方程。 例6. 已知,试用含x的代数式表示y,并证明。 解:由,得 6、中考原题: 例1已知,则M_。 分析:通过分式加减运算等式左边和右边的分母相同,则其分子也必然相同,即可求出M。 解: 例2已知,那么代数式的值是_。 分析:先化简所求分式,发现把看成整体代入即可求的结果。 解:原式 7、题型展示: 例1. 当x取何值时,式子有意义?当x取什么数时,该式子值为零? 解:由 得或 所以,当和时,原分式有意义 由分子得 当时,分母 当时,分母,原分式无意义。 所以当时,式子的值为零 例2. 求的值,其中。 分析:先化简,再求值。 解:原式 【实战模拟】1.
4、当x取何值时,分式有意义?2. 有一根烧红的铁钉,质量是m,温度是,它放出热量Q后,温度降为多少?(铁的比热为c)3. 计算:4. 解方程:5. 要在规定的日期内加工一批机器零件,如果甲单独做,刚好在规定日期内完成,乙单独做则要超过3天。现在甲、乙两人合作2天后,再由乙单独做,正好按期完成。问规定日期是多少天? 6. 已知,求的值。【试题答案】 1. 解:由题意得 解得且 当且时,原式有意义 2. 解:设温度降为t,由已知得: 答:温度降为。 3. 分析:此题的解法要比将和后两个分式直接通分计算简便,它采用了逐步通分的方法。因此灵活运用法则会给解题带来方便。同时注意结果要化为最简分式。 解:原式 4. 解:原方程化为 方程两边通分,得 化简得 解得 经检验:是原方程的根。 说明:解分式方程时,在掌握一般方法的基础上,要注意根据题目的特点,选用简便的方法,减少繁琐计算。 5. 分析:设规定日期是x天,则甲的工作效率为,乙的工作效率为,工作总量为1 解:设规定日期为x天 根据题意,得 解得 经检验是原方程的根 答:规定日期是6天。 6. 解: 由(1)(2)解得 - 12 -